000117228 001__ 117228
000117228 005__ 20240319080954.0
000117228 0247_ $$2doi$$a10.3390/antiox11030537
000117228 0248_ $$2sideral$$a128633
000117228 037__ $$aART-2022-128633
000117228 041__ $$aeng
000117228 100__ $$aPérez-Domínguez, S.
000117228 245__ $$aNanomechanical Study of Enzyme: Coenzyme Complexes: Bipartite Sites in Plastidic Ferredoxin-NADP+ Reductase for the Interaction with NADP+
000117228 260__ $$c2022
000117228 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117228 5203_ $$aPlastidic ferredoxin-NADP+ reductase (FNR) transfers two electrons from two ferredoxin or flavodoxin molecules to NADP+, generating NADPH. The forces holding the Anabaena FNR:NADP+ complex were analyzed by dynamic force spectroscopy, using WT FNR and three C-terminal Y303 variants, Y303S, Y303F, and Y303W. FNR was covalently immobilized on mica and NADP+ attached to AFM tips. Force–distance curves were collected for different loading rates and specific unbinding forces were analyzed under the Bell–Evans model to obtain the mechanostability parameters associated with the dissociation processes. The WT FNR:NADP+ complex presented a higher mechanical stability than that reported for the complexes with protein partners, corroborating the stronger affinity of FNR for NADP+. The Y303 mutation induced changes in the FNR:NADP+ interaction mechanical stability. NADP+ dissociated from WT and Y303W in a single event related to the release of the adenine moiety of the coenzyme. However, two events described the Y303S:NADP+ dissociation that was also a more durable complex due to the strong binding of the nicotinamide moiety of NADP+ to the catalytic site. Finally, Y303F shows intermediate behavior. Therefore, Y303, reported as crucial for achieving catalytically competent active site geometry, also regulates the concerted dissociation of the bipartite nucleotide moieties of the coenzyme. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
000117228 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E35-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-103901GB-I00
000117228 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117228 590__ $$a7.0$$b2022
000117228 592__ $$a1.084$$b2022
000117228 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b46 / 285 = 0.161$$c2022$$dQ1$$eT1
000117228 593__ $$aBiochemistry$$c2022$$dQ1
000117228 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b13 / 142 = 0.092$$c2022$$dQ1$$eT1
000117228 593__ $$aClinical Biochemistry$$c2022$$dQ1
000117228 591__ $$aCHEMISTRY, MEDICINAL$$b6 / 60 = 0.1$$c2022$$dQ1$$eT1
000117228 593__ $$aFood Science$$c2022$$dQ1
000117228 593__ $$aPhysiology$$c2022$$dQ1
000117228 593__ $$aMolecular Biology$$c2022$$dQ2
000117228 593__ $$aCell Biology$$c2022$$dQ2
000117228 594__ $$a8.8$$b2022
000117228 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117228 700__ $$aCaballero-Mancebo, S.
000117228 700__ $$0(orcid)0000-0003-3459-8605$$aMarcuello, C.
000117228 700__ $$0(orcid)0000-0001-9047-0046$$aMartínez-Júlvez, M.$$uUniversidad de Zaragoza
000117228 700__ $$0(orcid)0000-0001-8743-0182$$aMedina, M.$$uUniversidad de Zaragoza
000117228 700__ $$0(orcid)0000-0001-7460-5916$$aGracia Lostao, A.
000117228 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000117228 773__ $$g11, 3 (2022), 537 [20 pp]$$pAntioxidants$$tAntioxidants$$x2076-3921
000117228 8564_ $$s3587824$$uhttps://zaguan.unizar.es/record/117228/files/texto_completo.pdf$$yVersión publicada
000117228 8564_ $$s2722779$$uhttps://zaguan.unizar.es/record/117228/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117228 909CO $$ooai:zaguan.unizar.es:117228$$particulos$$pdriver
000117228 951__ $$a2024-03-18-13:23:58
000117228 980__ $$aARTICLE