Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Safe extended-range cycling of Li4Ti5O12-based anodes for ultra-high capacity thin-film batteries
Estadísticas de uso
Gráficos
Safe extended-range cycling of Li4Ti5O12-based anodes for ultra-high capacity thin-film batteries
Siller, V.
;
Gonzalez-Rosillo, J.
;
Nuñez Eroles, M.
;
Stchakovsky, M.
;
Arenal, R.
;
Morata, A.
;
Tarancón, A.
Resumen:
Lithium titanium oxide thin films are increasingly popular anode materials in microbatteries and hybrid supercapacitors, due to their improved safety, cost, and cycle lifetime. So far, research efforts have mainly focused on the pure spinel phase Li4Ti5O12 (LTO) and only a small fraction is dedicated to a broader spectrum of titanium-based metal oxide thin films. In this work, pulsed laser deposition is used in a multilayer approach by alternating LTO and Li2O ablations to create a heterogeneous landscape in the titania-based micro-anodes. This rich microstructure enables the safe extension of the accessible electrochemical window down to 0.2 V. This leads to extraordinary high specific capacities of 250–300 mAh/g at 1 C, maintaining a stable discharge capacity of 180 mAh/g at 16 C. Operando spectroscopic ellipsometry and Raman spectroscopy are used to track optical and structural changes as a function of the discharge voltage down to 0.01 V. A kinetically limited degradation mechanism based on the effective trapping of Li-ions at the octahedral 16c positions is proposed when cycling in the range of 0.2–0.01 V. In essence, our work contributes to titania-based nanoshapes as anodes of increased specific capacity due to a higher Li-site occupation, while maintaining their good stability and safety. © 2022 The Author(s)
Idioma:
Inglés
DOI:
10.1016/j.mtener.2022.100979
Año:
2022
Publicado en:
Materials Today Energy
25, 100979 (2022), [11 pp]
ISSN:
2468-6069
Factor impacto JCR:
9.3 (2022)
Categ. JCR:
CHEMISTRY, PHYSICAL
rank: 35 / 161 = 0.217
(2022)
- Q1
- T1
Categ. JCR:
MATERIALS SCIENCE, MULTIDISCIPLINARY
rank: 58 / 343 = 0.169
(2022)
- Q1
- T1
Categ. JCR:
ENERGY & FUELS
rank: 20 / 119 = 0.168
(2022)
- Q1
- T1
Factor impacto CITESCORE:
12.5 -
Energy
(Q1) -
Materials Science
(Q1)
Factor impacto SCIMAGO:
2.046 -
Energy Engineering and Power Technology
(Q1) -
Fuel Technology
(Q1) -
Renewable Energy, Sustainability and the Environment
(Q1) -
Nuclear Energy and Engineering
(Q1) -
Materials Science (miscellaneous)
(Q1)
Financiación:
info:eu-repo/grantAgreement/ES/DGA/E13-20R
Financiación:
info:eu-repo/grantAgreement/EC/H2020/801342/EU/ACCIÓ programme to foster mobility of researchers with a focus in applied research and technology transfer/TECNIOspringINDUSTRY
Financiación:
info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3
Financiación:
info:eu-repo/grantAgreement/EC/H2020/824072/EU/Energy HarveStorers for Powering the Internet of Things/HARVESTORE
Financiación:
info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/PID2019-104739GB-I00-AEI-10.13039-501100011033
Tipo y forma:
Artículo (Versión definitiva)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-03-18-14:05:41)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-07-05, última modificación el 2024-03-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks