Cyclic Meir-Keeler contraction and its fractals
Resumen: In present times, there has been a substantial endeavor to generalize the classical notion of iterated function system (IFS). We introduce a new type of non-linear contraction namely cyclic Meir-Keeler contraction, which is a generalization of the famous Banach contraction. We show the existence and uniqueness of the fixed point for the cyclic Meir-Keeler contraction. Using this result, we propose the cyclic Meir-Keeler IFS in the literature for construction of fractals. Furthermore, we extend the theory of countable IFS and generalized IFS by using these cyclic Meir-Keeler contraction maps.
Idioma: Inglés
DOI: 10.1080/01630563.2021.1937215
Año: 2021
Publicado en: NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 42, 9 (2021), 1053-1072
ISSN: 0163-0563

Factor impacto JCR: 1.418 (2021)
Categ. JCR: MATHEMATICS, APPLIED rank: 126 / 267 = 0.472 (2021) - Q2 - T2
Factor impacto CITESCORE: 1.8 - Mathematics (Q3) - Computer Science (Q3)

Factor impacto SCIMAGO: 0.522 - Analysis (Q2) - Signal Processing (Q2) - Computer Science Applications (Q2)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2023-05-18-14:21:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2022-07-11, last modified 2023-05-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)