Neural network assisted design of plasmonic nanostructures on superconducting transition-edge-sensors for single photon detectors; 35472873
Resumen: Transition edge sensors (TESs) are extremely sensitive thermometers made of superconducting materials operating at their transition temperature, where small variations in temperature give rise to a measurable increase in electrical resistance. Coupled to suitable absorbers, they are used as radiation detectors with very good energy resolution in several experiments. Particularly interesting are the applications that TESs may bring to single photon detection in the visible and infrared regimes. In this work, we propose a method to enhance absorption efficiency at these wavelengths. The operation principle exploits the generation of highly absorbing plasmons on the metallic surface. Following this approach, we report nanostructures featuring theoretical values of absorption reaching 98%, at the telecom design frequency (¿ = 1550 nm). The optimization process takes into account the TES requirements in terms of heat capacity, critical temperature and energy resolution leading to a promising design for an operating device. Neural networks were first trained and then used as solvers of the optical properties of the nanostructures. The neural network topology takes the geometrical parameters, the properties of materials and the wavelength of light as input, predicting the absorption spectrum at single wavelength as output. The incorporation of the material properties and the dependence with frequency was crucial to reduce the number of required spectra for training. The results are almost indistinguishable from those calculated with a commonly used numerical method in computational electromagnetism, the finite-difference time-domain algorithm, but up to 106 times faster than the numerical simulation. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement Journal © 2022
Idioma: Inglés
DOI: 10.1364/OE.453952
Año: 2022
Publicado en: OPTICS EXPRESS 30, 8 (2022), 12368-12377
ISSN: 1094-4087

Factor impacto JCR: 3.8 (2022)
Categ. JCR: OPTICS rank: 30 / 99 = 0.303 (2022) - Q2 - T1
Factor impacto CITESCORE: 6.9 - Physics and Astronomy (Q1)

Factor impacto SCIMAGO: 1.138 - Atomic and Molecular Physics, and Optics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MCIU/MAT2017-88358-C3-1-R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2020-Q1115221GB-C41
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096686-B-C22
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Óptica (Dpto. Física Aplicada)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-03-18-14:47:45)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-07-15, última modificación el 2024-03-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)