000117978 001__ 117978
000117978 005__ 20240319081008.0
000117978 0247_ $$2doi$$a10.3390/ma15072572
000117978 0248_ $$2sideral$$a129194
000117978 037__ $$aART-2022-129194
000117978 041__ $$aeng
000117978 100__ $$0(orcid)0000-0003-1958-4432$$aAlamán Díez, P.$$uUniversidad de Zaragoza
000117978 245__ $$aIn vitro hydrolytic degradation of polyester-based scaffolds under static and dynamic conditions in a customized perfusion bioreactor
000117978 260__ $$c2022
000117978 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117978 5203_ $$aCreating biofunctional artificial scaffolds could potentially meet the demand of patients suffering from bone defects without having to rely on donors or autologous transplantation. Three-dimensional (3D) printing has emerged as a promising tool to fabricate, by computer design, biodegradable polymeric scaffolds with high precision and accuracy, using patient-specific anatomical data. Achieving controlled degradation profiles of 3D printed polymeric scaffolds is an essential feature to consider to match them with the tissue regeneration rate. Thus, achieving a thorough characterization of the biomaterial degradation kinetics in physiological conditions is needed. Here, 50:50 blends made of poly(e-caprolactone)–Poly(D, L-lactic-co-glycolic acid (PCL-PLGA) were used to fabricate cylindrical scaffolds by 3D printing (Ø 7 × 2 mm). Their hydrolytic degradation under static and dynamic conditions was characterized and quantified. For this purpose, we designed and in-house fabricated a customized bioreactor. Several techniques were used to characterize the degradation of the parent polymers: X-ray Photoelectron Spectroscopy (XPS), Gel Permeation Chro-matography (GPC), Scanning Electron Microscopy (SEM), evaluation of the mechanical properties, weigh loss measurements as well as the monitoring of the degradation media pH. Our results showed that flow perfusion is critical in the degradation process of PCL-PLGA based scaffolds implying an accelerated hydrolysis compared to the ones studied under static conditions, and up to 4 weeks are needed to observe significant degradation in polyester scaffolds of this size and chemical composition. Our degradation study and characterization methodology are relevant for an accurate design and to tailor the physicochemical properties of polyester-based scaffolds for bone tissue engineering.
000117978 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-113819RB-I00$$9info:eu-repo/grantAgreement/EC/H2020/722535/EU/Predictive models and simulations in bone regeneration: a multiscale patient-specific approach/CuraBone$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 722535-CuraBone$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2017-84780-C2-1-R
000117978 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117978 590__ $$a3.4$$b2022
000117978 592__ $$a0.563$$b2022
000117978 591__ $$aMETALLURGY & METALLURGICAL ENGINEERING$$b20 / 79 = 0.253$$c2022$$dQ2$$eT1
000117978 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ2
000117978 591__ $$aPHYSICS, APPLIED$$b57 / 160 = 0.356$$c2022$$dQ2$$eT2
000117978 593__ $$aCondensed Matter Physics$$c2022$$dQ2
000117978 591__ $$aPHYSICS, CONDENSED MATTER$$b29 / 67 = 0.433$$c2022$$dQ2$$eT2
000117978 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b174 / 343 = 0.507$$c2022$$dQ3$$eT2
000117978 591__ $$aCHEMISTRY, PHYSICAL$$b84 / 161 = 0.522$$c2022$$dQ3$$eT2
000117978 594__ $$a5.2$$b2022
000117978 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117978 700__ $$0(orcid)0000-0001-7062-9099$$aGarcía Gareta, E.$$uUniversidad de Zaragoza
000117978 700__ $$aNapal, P. F.
000117978 700__ $$0(orcid)0000-0003-3165-0156$$aArruebo, M.$$uUniversidad de Zaragoza
000117978 700__ $$0(orcid)0000-0002-2901-4188$$aPérez, M. Á.$$uUniversidad de Zaragoza
000117978 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000117978 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000117978 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000117978 773__ $$g15, 7 (2022), 2572 [18 pp.]$$pMaterials (Basel)$$tMaterials$$x1996-1944
000117978 8564_ $$s12671662$$uhttps://zaguan.unizar.es/record/117978/files/texto_completo.pdf$$yVersión publicada
000117978 8564_ $$s2798151$$uhttps://zaguan.unizar.es/record/117978/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117978 909CO $$ooai:zaguan.unizar.es:117978$$particulos$$pdriver
000117978 951__ $$a2024-03-18-14:53:00
000117978 980__ $$aARTICLE