Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Facial recognition system for people with and without face mask in times of the covid-19 pandemic
Estadísticas de uso
Gráficos
Facial recognition system for people with and without face mask in times of the covid-19 pandemic
Talahua J.S.
;
Buele J.
;
Calvopina P.
;
Varela-Aldas J.
Resumen:
In the face of the COVID-19 pandemic, the World Health Organization (WHO) declared the use of a face mask as a mandatory biosafety measure. This has caused problems in current facial recognition systems, motivating the development of this research. This manuscript describes the development of a system for recognizing people, even when they are using a face mask, from photographs. A classification model based on the MobileNetV2 architecture and the OpenCv''s face detector is used. Thus, using these stages, it can be identified where the face is and it can be determined whether or not it is wearing a face mask. The FaceNet model is used as a feature extractor and a feedforward multilayer perceptron to perform facial recognition. For training the facial recognition models, a set of observations made up of 13, 359 images is generated; 52.9% images with a face mask and 47.1% images without a face mask. The experimental results show that there is an accuracy of 99.65% in determining whether a person is wearing a mask or not. An accuracy of 99.52% is achieved in the facial recognition of 10 people with masks, while for facial recognition without masks, an accuracy of 99.96% is obtained. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma:
Inglés
DOI:
10.3390/su13126900
Año:
2021
Publicado en:
Sustainability (Switzerland)
13, 12 (2021), 6900 [19 pp]
ISSN:
2071-1050
Factor impacto JCR:
3.889 (2021)
Categ. JCR:
ENVIRONMENTAL STUDIES
rank: 57 / 128 = 0.445
(2021)
- Q2
- T2
Categ. JCR:
ENVIRONMENTAL SCIENCES
rank: 133 / 279 = 0.477
(2021)
- Q2
- T2
Categ. JCR:
GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
rank: 35 / 47 = 0.745
(2021)
- Q3
- T3
Categ. JCR:
GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
rank: 7 / 9 = 0.778
(2021)
- Q4
- T3
Factor impacto CITESCORE:
5.0 -
Social Sciences
(Q1) -
Engineering
(Q1) -
Energy
(Q2) -
Environmental Science
(Q2)
Factor impacto SCIMAGO:
0.664 -
Energy Engineering and Power Technology
(Q1) -
Renewable Energy, Sustainability and the Environment
(Q1) -
Management, Monitoring, Policy and Law
(Q1) -
Geography, Planning and Development
(Q1)
Tipo y forma:
Artículo (Versión definitiva)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2023-05-18-16:05:31)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-09-08, última modificación el 2023-05-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks