Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Atlantis Institut des Sciences Fictives
Recherche
Soumettre
Personnaliser
Vos alertes
Vos paniers
Vos recherches
Aide
EN
/
ES
Accueil
>
articulos
> Facial recognition system for people with and without face mask in times of the covid-19 pandemic
Statistiques d'utilisation
Graphiques
Facial recognition system for people with and without face mask in times of the covid-19 pandemic
Talahua J.S.
;
Buele J.
;
Calvopina P.
;
Varela-Aldas J.
Resumen:
In the face of the COVID-19 pandemic, the World Health Organization (WHO) declared the use of a face mask as a mandatory biosafety measure. This has caused problems in current facial recognition systems, motivating the development of this research. This manuscript describes the development of a system for recognizing people, even when they are using a face mask, from photographs. A classification model based on the MobileNetV2 architecture and the OpenCv''s face detector is used. Thus, using these stages, it can be identified where the face is and it can be determined whether or not it is wearing a face mask. The FaceNet model is used as a feature extractor and a feedforward multilayer perceptron to perform facial recognition. For training the facial recognition models, a set of observations made up of 13, 359 images is generated; 52.9% images with a face mask and 47.1% images without a face mask. The experimental results show that there is an accuracy of 99.65% in determining whether a person is wearing a mask or not. An accuracy of 99.52% is achieved in the facial recognition of 10 people with masks, while for facial recognition without masks, an accuracy of 99.96% is obtained. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma:
Inglés
DOI:
10.3390/su13126900
Año:
2021
Publicado en:
Sustainability (Switzerland)
13, 12 (2021), 6900 [19 pp]
ISSN:
2071-1050
Factor impacto JCR:
3.889 (2021)
Categ. JCR:
ENVIRONMENTAL STUDIES
rank: 57 / 128 = 0.445
(2021)
- Q2
- T2
Categ. JCR:
ENVIRONMENTAL SCIENCES
rank: 133 / 279 = 0.477
(2021)
- Q2
- T2
Categ. JCR:
GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
rank: 35 / 47 = 0.745
(2021)
- Q3
- T3
Categ. JCR:
GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
rank: 7 / 9 = 0.778
(2021)
- Q4
- T3
Factor impacto CITESCORE:
5.0 -
Social Sciences
(Q1) -
Engineering
(Q1) -
Energy
(Q2) -
Environmental Science
(Q2)
Factor impacto SCIMAGO:
0.664 -
Energy Engineering and Power Technology
(Q1) -
Renewable Energy, Sustainability and the Environment
(Q1) -
Management, Monitoring, Policy and Law
(Q1) -
Geography, Planning and Development
(Q1)
Tipo y forma:
Article (Published version)
Exportado de SIDERAL (2023-05-18-16:05:31)
Permalink:
Copy
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
articulos
Retour à la recherche
Notice créée le 2022-09-08, modifiée le 2023-05-19
Versión publicada:
PDF
Évaluer ce document:
Rate this document:
1
2
3
4
5
(Pas encore évalué)
Ajouter au panier personnel
Exporter vers
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks