Total positivity and accurate computations with Gram matrices of Bernstein bases

Mainar, E. (Universidad de Zaragoza) ; Peña, J. M. (Universidad de Zaragoza) ; Rubio, B. (Universidad de Zaragoza)
Total positivity and accurate computations with Gram matrices of Bernstein bases
Resumen: In this paper, an accurate method to construct the bidiagonal factorization of Gram (mass) matrices of Bernstein bases of positive and negative degree is obtained and used to compute with high relative accuracy their eigenvalues, singular values and inverses. Numerical examples are included.
Idioma: Inglés
DOI: 10.1007/s11075-022-01284-0
Año: 2022
Publicado en: NUMERICAL ALGORITHMS 91 (2022), 841–859
ISSN: 1017-1398

Factor impacto JCR: 2.1 (2022)
Categ. JCR: MATHEMATICS, APPLIED rank: 59 / 267 = 0.221 (2022) - Q1 - T1
Factor impacto CITESCORE: 4.4 - Mathematics (Q1)

Factor impacto SCIMAGO: 0.828 - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-20R
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI/PGC2018-096321-B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-16:14:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-09-08, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)