Free quotients of fundamental groups of smooth quasi-projective varieties
Resumen: We study the fundamental groups of the complements to curves on simply connected surfaces, admitting non-abelian free groups as their quotients. We show that given a subset of the Néron-Severi group of such a surface, there are only finitely many classes of equisingular isotopy of curves with irreducible components belonging to this subset for which the fundamental groups of the complement admit surjections onto a free group of a given sufficiently large rank. Examples of subsets of the Néron-Severi group are given with infinitely many isotopy classes of curves with irreducible components from such a subset and fundamental groups of the complements admitting surjections on a free group only of a small rank. © The Author(s) 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.
Idioma: Inglés
DOI: 10.1017/S0013091521000675
Año: 2021
Publicado en: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY 64, 4 (2021), 924-946
ISSN: 0013-0915

Factor impacto JCR: 1.088 (2021)
Categ. JCR: MATHEMATICS rank: 134 / 333 = 0.402 (2021) - Q2 - T2
Factor impacto CITESCORE: 1.4 - Mathematics (Q3)

Factor impacto SCIMAGO: 0.796 - Mathematics (miscellaneous) (Q1)

Tipo y forma: Article (PrePrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2023-05-18-15:22:30)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-09-21, last modified 2023-05-19


Preprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)