000118799 001__ 118799 000118799 005__ 20240319081003.0 000118799 0247_ $$2doi$$a10.1007/s13398-022-01311-8 000118799 0248_ $$2sideral$$a129985 000118799 037__ $$aART-2022-129985 000118799 041__ $$aeng 000118799 100__ $$0(orcid)0000-0001-9211-4475$$aGarcía-Lirola, L. C.$$uUniversidad de Zaragoza 000118799 245__ $$aExtremal structure in ultrapowers of Banach spaces 000118799 260__ $$c2022 000118799 5060_ $$aAccess copy available to the general public$$fUnrestricted 000118799 5203_ $$aGiven a bounded convex subset C of a Banach space X and a free ultrafilter U, we study which points (xi)U are extreme points of the ultrapower CU in XU. In general, we obtain that when { xi} is made of extreme points (respectively denting points, strongly exposed points) and they satisfy some kind of uniformity, then (xi)U is an extreme point (respectively denting point, strongly exposed point) of CU. We also show that every extreme point of CU is strongly extreme, and that every point exposed by a functional in (X*)U is strongly exposed, provided that U is a countably incomplete ultrafilter. Finally, we analyse the extremal structure of CU in the case that C is a super weakly compact or uniformly convex set. © 2022, The Author(s). 000118799 536__ $$9info:eu-repo/grantAgreement/ES/AEI-FEDER/ MTM2017-83262-C2-2-P 000118799 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000118799 590__ $$a2.9$$b2022 000118799 592__ $$a0.933$$b2022 000118799 591__ $$aMATHEMATICS$$b15 / 329 = 0.046$$c2022$$dQ1$$eT1 000118799 593__ $$aAlgebra and Number Theory$$c2022$$dQ1 000118799 593__ $$aAnalysis$$c2022$$dQ1 000118799 593__ $$aGeometry and Topology$$c2022$$dQ1 000118799 593__ $$aComputational Mathematics$$c2022$$dQ1 000118799 593__ $$aApplied Mathematics$$c2022$$dQ1 000118799 594__ $$a4.9$$b2022 000118799 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000118799 700__ $$aGrelier, G. 000118799 700__ $$aRueda Zoca, A. 000118799 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático 000118799 773__ $$g116, 4 (2022), 161 [25 pp]$$pRev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.$$tRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas$$x1578-7303 000118799 8564_ $$s456917$$uhttps://zaguan.unizar.es/record/118799/files/texto_completo.pdf$$yVersión publicada 000118799 8564_ $$s1288958$$uhttps://zaguan.unizar.es/record/118799/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000118799 909CO $$ooai:zaguan.unizar.es:118799$$particulos$$pdriver 000118799 951__ $$a2024-03-18-14:23:51 000118799 980__ $$aARTICLE