Local invariants of minimal generic curves on rational surfaces
Financiación FP7 / Fp7 Funds
Resumen: Let (C, 0) be a reduced curve germ in a normal surface singularity (X, 0). The main goal is to recover the delta invariant [delta](C) of the abstract curve (C, 0) from the topology of the embedding (C, 0) ⊂ (X, 0). We give explicit formulae whenever (C, 0) is minimal generic and (X, 0) is rational (as continuation of [8, 9]).
Additionally, in this case, we prove that if (X, 0) is a quotient singularity, then [delta](C) only admits the values r−1 or r, where r is the number or irreducible components of (C, 0). ([delta](C) = r − 1 realizes the extremal lower bound, valid only for 'ordinary r–tuples'.)

Idioma: Inglés
DOI: 10.1090/conm/778/15660
Año: 2022
Publicado en: Contemporary mathematics - American Mathematical Society 778 (2022), 231-258
ISSN: 0271-4132

Factor impacto CITESCORE: 0.9 - Mathematics (Q4)

Factor impacto SCIMAGO: 0.425 - Mathematics (miscellaneous)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/EC/FP7/615655/EU/New methods and interacions in Singularity Theory and beyond/NMST
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MINECO/SEV-2017-0718
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-07-31-09:39:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-10-06, last modified 2024-07-31


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)