Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Atlantis Institut des Sciences Fictives
Recherche
Soumettre
Personnaliser
Vos alertes
Vos paniers
Vos recherches
Aide
EN
/
ES
Accueil
>
articulos
> Tuning thermoelectric properties of Bi2Ca2Co2Oy through K doping and laser floating zone processing
Statistiques d'utilisation
Graphiques
Tuning thermoelectric properties of Bi2Ca2Co2Oy through K doping and laser floating zone processing
Özçelik, C.
;
Depci, T.
;
Gürsul, M.
;
Çetin, G.
;
Özçelik, B.
;
Torres, M.A.
(Universidad de Zaragoza)
;
Madre, M.A.
(Universidad de Zaragoza)
;
Sotelo, A.
(Universidad de Zaragoza)
Resumen:
In the present study, thermoelectric Bi2Ca2-xKxCo2Oy ceramic materials (x = 0.0, 0.05, 0.075, 0.10, and 0.125) in different forms (called bulk, as-grown and annealed fibers) have been manufactured via a classical solid-state method and textured using the laser floating zone (LFZ) technique. The identification and characteristics of undoped and doped samples were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns of all samples have shown great similarity, and the major peaks can be assigned to the Bi2Sr2Co2Oy thermoelectric phase, independently of the processing technique and K-doping. SEM-EDS have indicated the randomly oriented plate like grains of different sizes in bulk sample, evolving to longer and well-oriented grain structure through K-doping and LFZ. Because of the incongruent melting properties of compound, the high number of secondary phases formed in the as-grown samples. In order to reduce it, an annealing and K-doping process have been applied. The microstructural evolution is reflected on the electrical properties, and the lowest resistivity values are found in the annealed K-doped fibers. Seebeck coefficient is positive in all cases, pointing out to p-type conduction mechanism. These modifications led to PF values up to 0.162 mW/(K2m), obtained in 0.10 K-doped annealed fibers at 650 °C. © 2021 Elsevier Masson SAS
Idioma:
Inglés
DOI:
10.1016/j.solidstatesciences.2021.106732
Año:
2021
Publicado en:
SOLID STATE SCIENCES
120 (2021), 106732 [9 pp.]
ISSN:
1293-2558
Factor impacto JCR:
3.752 (2021)
Categ. JCR:
CHEMISTRY, INORGANIC & NUCLEAR
rank: 13 / 46 = 0.283
(2021)
- Q2
- T1
Categ. JCR:
PHYSICS, CONDENSED MATTER
rank: 27 / 69 = 0.391
(2021)
- Q2
- T2
Categ. JCR:
CHEMISTRY, PHYSICAL
rank: 84 / 165 = 0.509
(2021)
- Q3
- T2
Factor impacto CITESCORE:
5.2 -
Physics and Astronomy
(Q1) -
Materials Science
(Q2)
Factor impacto SCIMAGO:
0.557 -
Condensed Matter Physics
(Q2) -
Chemistry (miscellaneous)
(Q2)
Financiación:
info:eu-repo/grantAgreement/ES/DGA-FEDER/T54-20R
Financiación:
info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82183-C3-1-R
Tipo y forma:
Article (PostPrint)
Área (Departamento):
Área Expresión Gráfica en Ing.
(
Dpto. Ingeniería Diseño Fabri.
)
Área (Departamento):
Área Cienc.Mater. Ingen.Metal.
(
Dpto. Ciencia Tecnol.Mater.Fl.
)
Exportado de SIDERAL (2024-01-04-11:07:34)
Permalink:
Copy
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
articulos
Retour à la recherche
Notice créée le 2022-10-20, modifiée le 2024-01-04
Postprint:
PDF
Évaluer ce document:
Rate this document:
1
2
3
4
5
(Pas encore évalué)
Ajouter au panier personnel
Exporter vers
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks