000119014 001__ 119014
000119014 005__ 20240731103316.0
000119014 0247_ $$2doi$$a10.1016/j.cam.2022.114569
000119014 0248_ $$2sideral$$a129457
000119014 037__ $$aART-2023-129457
000119014 041__ $$aeng
000119014 100__ $$0(orcid)0000-0003-1263-1996$$aClavero, C.$$uUniversidad de Zaragoza
000119014 245__ $$aA multi-splitting method to solve 2D parabolic reaction-diffusion singularly perturbed systems
000119014 260__ $$c2023
000119014 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119014 5203_ $$aIn this paper we design and analyze a numerical method to solve a type of reaction–diffusion 2D parabolic singularly perturbed systems. The method combines the central finite difference scheme on an appropriate piecewise uniform mesh of Shishkin type to discretize in space, and the fractional implicit Euler method together with a splitting by directions and components of the reaction–diffusion operator to integrate in time. We prove that the method is uniformly convergent of first order in time and almost second order in space. The use of this time integration technique has the advantage that only tridiagonal linear systems must be solved to obtain the numerical solution at each time step; because of this, our method provides a remarkable reduction of computational cost, in comparison with other implicit methods which have been previously proposed for the same type of problems. Full details of the uniform convergence are given only for systems with two equations; nevertheless, our ideas can be easily extended to systems with an arbitrary number of equations as it is shown in the numerical experiences performed. The numerical results show in practice the qualities of our proposal.
000119014 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R$$9info:eu-repo/grantAgreement/ES/IUMA/MTM2017-83490-P
000119014 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000119014 590__ $$a2.1$$b2023
000119014 592__ $$a0.858$$b2023
000119014 591__ $$aMATHEMATICS, APPLIED$$b53 / 331 = 0.16$$c2023$$dQ1$$eT1
000119014 593__ $$aComputational Mathematics$$c2023$$dQ2
000119014 593__ $$aApplied Mathematics$$c2023$$dQ2
000119014 594__ $$a5.4$$b2023
000119014 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000119014 700__ $$aJorge, J.C.
000119014 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000119014 773__ $$g417 (2023), 114569 [14 pp.]$$pJ. comput. appl. math.$$tJournal of Computational and Applied Mathematics$$x0377-0427
000119014 8564_ $$s727906$$uhttps://zaguan.unizar.es/record/119014/files/texto_completo.pdf$$yPostprint
000119014 8564_ $$s1551363$$uhttps://zaguan.unizar.es/record/119014/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000119014 909CO $$ooai:zaguan.unizar.es:119014$$particulos$$pdriver
000119014 951__ $$a2024-07-31-09:41:19
000119014 980__ $$aARTICLE