Accurate computations with matrices related to bases {tie¿t}

Mainar, E. (Universidad de Zaragoza) ; Peña, J. M. (Universidad de Zaragoza) ; Rubio, B. (Universidad de Zaragoza)
Accurate computations with matrices related to bases {tie¿t}
Resumen: The total positivity of collocation, Wronskian and Gram matrices corresponding to bases of the form (eλt,teλt,…,tneλt) is analyzed. A bidiagonal decomposition providing the accurate numerical resolution of algebraic linear problems with these matrices is derived. The numerical experimentation confirms the accuracy of the proposed methods.
Idioma: Inglés
DOI: 10.1007/s10444-022-09954-2
Año: 2022
Publicado en: ADVANCES IN COMPUTATIONAL MATHEMATICS 48, 4 (2022), 38 [25 pp.]
ISSN: 1019-7168

Factor impacto JCR: 1.7 (2022)
Categ. JCR: MATHEMATICS, APPLIED rank: 95 / 267 = 0.356 (2022) - Q2 - T2
Factor impacto CITESCORE: 3.4 - Mathematics (Q2)

Factor impacto SCIMAGO: 0.813 - Computational Mathematics (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-20R
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI/PGC2018-096321-B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-14:37:49)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2022-11-24, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)