Effects of missing data on heart rate variability metrics

Cajal, Diego (Universidad de Zaragoza) ; Hernando, David ; Lázaro, Jesús (Universidad de Zaragoza) ; Laguna, Pablo (Universidad de Zaragoza) ; Gil, Eduardo (Universidad de Zaragoza) ; Bailón, Raquel (Universidad de Zaragoza)
Effects of missing data on heart rate variability metrics
Resumen: Heart rate variability (HRV) has been studied for decades in clinical environments. Currently, the exponential growth of wearable devices in health monitoring is leading to new challenges that need to be solved. These devices have relatively poor signal quality and are affected by numerous motion artifacts, with data loss being the main stumbling block for their use in HRV analysis. In the present paper, it is shown how data loss affects HRV metrics in the time domain and frequency domain and Poincaré plots. A gap-filling method is proposed and compared to other existing approaches to alleviate these effects, both with simulated (16 subjects) and real (20 subjects) missing data. Two different data loss scenarios have been simulated: (i) scattered missing beats, related to a low signal to noise ratio; and (ii) bursts of missing beats, with the most common due to motion artifacts. In addition, a real database of photoplethysmography-derived pulse detection series provided by Apple Watch during a protocol including relax and stress stages is analyzed. The best correction method and maximum acceptable missing beats are given. Results suggest that correction without gap filling is the best option for the standard deviation of the normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD) and Poincaré plot metrics in datasets with bursts of missing beats predominance (p<0.05), whereas they benefit from gap-filling approaches in the case of scattered missing beats (p<0.05). Gap-filling approaches are also the best for frequency-domain metrics (p<0.05). The findings of this work are useful for the design of robust HRV applications depending on missing data tolerance and the desired HRV metrics.
Idioma: Inglés
DOI: 10.3390/s22155774
Año: 2022
Publicado en: Sensors 22, 15 (2022), 5774 [22 pp.]
ISSN: 1424-8220

Factor impacto JCR: 3.9 (2022)
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 26 / 86 = 0.302 (2022) - Q2 - T1
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 19 / 63 = 0.302 (2022) - Q2 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 100 / 274 = 0.365 (2022) - Q2 - T2

Factor impacto CITESCORE: 6.8 - Engineering (Q1) - Chemistry (Q1) - Biochemistry, Genetics and Molecular Biology (Q2) - Physics and Astronomy (Q1)

Factor impacto SCIMAGO: 0.764 - Instrumentation (Q1) - Analytical Chemistry (Q1) - Medicine (miscellaneous) (Q2) - Information Systems (Q2) - Biochemistry (Q2) - Atomic and Molecular Physics, and Optics (Q2) - Electrical and Electronic Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T39-20R-BSICoS group
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/PID2021-126734OB-C21
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-14:56:14)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Teoría de la Señal y Comunicaciones
Articles > Artículos por área > Ingeniería de Sistemas y Automática



 Record created 2022-11-24, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)