Hydrogen and CNT production by methane cracking using Ni–Cu and Co–Cu catalysts supported on argan-derived carbon

Cazaña, Fernando (Universidad de Zaragoza) ; Afailal, Zainab ; González-Martín, Miguel (Universidad de Zaragoza) ; Sánchez, José Luis (Universidad de Zaragoza) ; Latorre, Nieves (Universidad de Zaragoza) ; Romeo, Eva (Universidad de Zaragoza) ; Arauzo, Jesús (Universidad de Zaragoza) ; Monzón, Antonio (Universidad de Zaragoza)
Hydrogen and CNT production by methane cracking using Ni–Cu and Co–Cu catalysts supported on argan-derived carbon
Resumen: The 21st century arrived with global growth of energy demand caused by population and standard of living increases. In this context, a suitable alternative to produce COx-free H2 is the catalytic decomposition of methane (CDM), which also allows for obtaining high-value-added carbonaceous nanomaterials (CNMs), such as carbon nanotubes (CNTs). This work presents the results obtained in the co-production of COx-free hydrogen and CNTs by CDM using Ni–Cu and Co–Cu catalysts supported on carbon derived from Argan (Argania spinosa) shell (ArDC). The results show that the operation at 900 °C and a feed-ratio CH4:H2 = 2 with the Ni–Cu/ArDC catalyst is the most active, producing 3.7 gC/gmetal after 2 h of reaction (equivalent to average hydrogen productivity of 0.61 g H2/gmetal∙h). The lower productivity of the Co–Cu/ArDC catalyst (1.4 gC/gmetal) could be caused by the higher proportion of small metallic NPs (<5 nm) that remain confined inside the micropores of the carbonaceous support, hindering the formation and growth of the CNTs. The TEM and Raman results indicate that the Co–Cu catalyst is able to selectively produce CNTs of high quality at temperatures below 850 °C, attaining the best results at 800 °C. The results obtained in this work also show the elevated potential of Argan residues, as a representative of other lignocellulosic raw materials, in the development of carbonaceous materials and nanomaterials of high added-value.
Idioma: Inglés
DOI: 10.3390/chemengineering6040047
Año: 2022
Publicado en: ChemEngineering 6, 4 (2022), 47 [20 pp.]
ISSN: 2305-7084

Factor impacto CITESCORE: 4.7 - Engineering (Q2) - Chemical Engineering (Q2) - Energy (Q2)

Factor impacto SCIMAGO: 0.471 - Chemical Engineering (miscellaneous) (Q2) - Engineering (miscellaneous) (Q2) - Energy (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MCINN/PRE2018-086557
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-113809RB-C31/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MCIN/PLEC2021-008086
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2023-09-13-13:29:58)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-11-24, última modificación el 2023-09-14


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)