000119844 001__ 119844
000119844 005__ 20230914083550.0
000119844 0247_ $$2doi$$a10.3390/chemengineering6040047
000119844 0248_ $$2sideral$$a130640
000119844 037__ $$aART-2022-130640
000119844 041__ $$aeng
000119844 100__ $$0(orcid)0000-0001-9220-9909$$aCazaña, Fernando$$uUniversidad de Zaragoza
000119844 245__ $$aHydrogen and CNT production by methane cracking using Ni–Cu and Co–Cu catalysts supported on argan-derived carbon
000119844 260__ $$c2022
000119844 5060_ $$aAccess copy available to the general public$$fUnrestricted
000119844 5203_ $$aThe 21st century arrived with global growth of energy demand caused by population and standard of living increases. In this context, a suitable alternative to produce COx-free H2 is the catalytic decomposition of methane (CDM), which also allows for obtaining high-value-added carbonaceous nanomaterials (CNMs), such as carbon nanotubes (CNTs). This work presents the results obtained in the co-production of COx-free hydrogen and CNTs by CDM using Ni–Cu and Co–Cu catalysts supported on carbon derived from Argan (Argania spinosa) shell (ArDC). The results show that the operation at 900 °C and a feed-ratio CH4:H2 = 2 with the Ni–Cu/ArDC catalyst is the most active, producing 3.7 gC/gmetal after 2 h of reaction (equivalent to average hydrogen productivity of 0.61 g H2/gmetal∙h). The lower productivity of the Co–Cu/ArDC catalyst (1.4 gC/gmetal) could be caused by the higher proportion of small metallic NPs (<5 nm) that remain confined inside the micropores of the carbonaceous support, hindering the formation and growth of the CNTs. The TEM and Raman results indicate that the Co–Cu catalyst is able to selectively produce CNTs of high quality at temperatures below 850 °C, attaining the best results at 800 °C. The results obtained in this work also show the elevated potential of Argan residues, as a representative of other lignocellulosic raw materials, in the development of carbonaceous materials and nanomaterials of high added-value.
000119844 536__ $$9info:eu-repo/grantAgreement/ES/MCINN/PRE2018-086557$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113809RB-C31/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MCIN/PLEC2021-008086
000119844 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000119844 592__ $$a0.471$$b2022
000119844 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ2
000119844 593__ $$aEngineering (miscellaneous)$$c2022$$dQ2
000119844 593__ $$aEnergy (miscellaneous)$$c2022$$dQ2
000119844 594__ $$a4.7$$b2022
000119844 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000119844 700__ $$0(orcid)0000-0002-9091-672X$$aAfailal, Zainab
000119844 700__ $$0(orcid)0000-0003-4875-5552$$aGonzález-Martín, Miguel$$uUniversidad de Zaragoza
000119844 700__ $$0(orcid)0000-0002-9705-2207$$aSánchez, José Luis$$uUniversidad de Zaragoza
000119844 700__ $$0(orcid)0000-0001-6360-4475$$aLatorre, Nieves$$uUniversidad de Zaragoza
000119844 700__ $$0(orcid)0000-0002-2363-2735$$aRomeo, Eva$$uUniversidad de Zaragoza
000119844 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, Jesús$$uUniversidad de Zaragoza
000119844 700__ $$0(orcid)0000-0002-7836-5777$$aMonzón, Antonio$$uUniversidad de Zaragoza
000119844 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000119844 773__ $$g6, 4 (2022), 47 [20 pp.]$$tChemEngineering$$x2305-7084
000119844 8564_ $$s5587163$$uhttps://zaguan.unizar.es/record/119844/files/texto_completo.pdf$$yVersión publicada
000119844 8564_ $$s2779468$$uhttps://zaguan.unizar.es/record/119844/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000119844 909CO $$ooai:zaguan.unizar.es:119844$$particulos$$pdriver
000119844 951__ $$a2023-09-13-13:29:58
000119844 980__ $$aARTICLE