Catalan Generating Functions for Generators of Uni-parametric Families of Operators
Resumen: In this paper we study solutions of the quadratic equation AY2−Y+I=0 where A is the generator of a one parameter family of operator (C0-semigroup or cosine functions) on a Banach space X with growth bound w0≤14. In the case of C0-semigroups, we show that a solution, which we call Catalan generating function of A, C(A), is given by the following Bochner integral,
C(A)x:=∫∞0c(t)T(t)xdt,x∈X,
where c is the Catalan kernel,
c(t):=12π∫∞14e−λt4λ−1−−−−−√λdλ,t>0.
Similar (and more complicated) results hold for cosine functions. We study algebraic properties of the Catalan kernel c as an element in Banach algebras L1ω(R+), endowed with the usual convolution product, ∗ and with the cosine convolution product, ∗c. The Hille–Phillips functional calculus allows to transfer these properties to C0-semigroups and cosine functions. In particular, we obtain a spectral mapping theorem for C(A). Finally, we present some examples, applications and conjectures to illustrate our results.

Idioma: Inglés
DOI: 10.1007/s00009-022-02155-7
Año: 2022
Publicado en: Mediterranean Journal of Mathematics 19, 5 (2022), 238 [27 pp.]
ISSN: 1660-5446

Factor impacto JCR: 1.1 (2022)
Categ. JCR: MATHEMATICS rank: 101 / 329 = 0.307 (2022) - Q2 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 161 / 267 = 0.603 (2022) - Q3 - T2

Factor impacto CITESCORE: 1.7 - Mathematics (Q3)

Factor impacto SCIMAGO: 0.531 - Mathematics (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/MCYTS-DGI-FEDER/PID2019-105979GB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-15:45:05)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2022-11-24, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)