Kinematics of individual muscle units in natural contractions measured in vivo using ultrafast ultrasound
Financiación H2020 / H2020 Funds
Resumen: Objective. The study of human neuromechanical control at the motor unit (MU) level has predominantly focussed on electrical activity and force generation, whilst the link between these, i.e. the muscle deformation, has not been widely studied. To address this gap, we analysed the kinematics of muscle units in natural contractions. Approach. We combined high-density surface electromyography (HDsEMG) and ultrafast ultrasound (US) recordings, at 1000 frames per second, from the tibialis anterior muscle to measure the motion of the muscular tissue caused by individual MU contractions. The MU discharge times were identified online by decomposition of the HDsEMG and provided as biofeedback to 12 subjects who were instructed to keep the MU active at the minimum discharge rate (9.8 ± 4.7 pulses per second; force less than 10% of the maximum). The series of discharge times were used to identify the velocity maps associated with 51 single muscle unit movements with high spatio-temporal precision, by a novel processing method on the concurrently recorded US images. From the individual MU velocity maps, we estimated the region of movement, the duration of the motion, the contraction time, and the excitation–contraction (E–C) coupling delay. Main results. Individual muscle unit motions could be reliably identified from the velocity maps in 10 out of 12 subjects. The duration of the motion, total contraction time, and E–C coupling were 17.9 $ \pm $ 5.3 ms, 56.6 $ \pm $ 8.4 ms, and 3.8 $ \pm $ 3.0 ms (n = 390 across ten participants). The experimental measures also provided the first evidence of muscle unit twisting during voluntary contractions and MU territories with distinct split regions. Significance. The proposed method allows for the study of kinematics of individual MU twitches during natural contractions. The described measurements and characterisations open new avenues for the study of neuromechanics in healthy and pathological conditions.
Idioma: Inglés
DOI: 10.1088/1741-2552/ac8c6c
Año: 2022
Publicado en: Journal of Neural Engineering 19, 5 (2022), 056005 [18 pp.]
ISSN: 1741-2560

Factor impacto JCR: 4.0 (2022)
Categ. JCR: NEUROSCIENCES rank: 106 / 272 = 0.39 (2022) - Q2 - T2
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 42 / 96 = 0.438 (2022) - Q2 - T2

Factor impacto CITESCORE: 7.5 - Neuroscience (Q1) - Engineering (Q1)

Factor impacto SCIMAGO: 1.135 - Biomedical Engineering (Q1) - Cellular and Molecular Neuroscience (Q2)

Financiación: info:eu-repo/grantAgreement/EC/H2020/899822/EU/Ultrasound peripheral interface and in-vitro model of human somatosensory system and muscles for motor decoding and restoration of somatic sensations in amputees/SOMA
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-03-18-16:12:46)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-11-24, última modificación el 2024-03-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)