Butson full propelinear codes
Resumen: In this paper we study Butson Hadamard matrices, and codes over finite rings coming from these matrices in logarithmic form, called BH-codes. We introduce a new morphism of Butson Hadamard matrices through a generalized Gray map on the matrices in logarithmic form, which is comparable to the morphism given in a recent note of Ó Catháin and Swartz. That is, we show how, if given a Butson Hadamard matrix over the kth roots of unity, we can construct a larger Butson matrix over the ℓth roots of unity for any ℓ dividing k, provided that any prime p dividing k also divides ℓ. We prove that a Zps-additive code with p a prime number is isomorphic as a group to a BH-code over Zps and the image of this BH-code under the Gray map is a BH-code over Zp (binary Hadamard code for p=2). Further, we investigate the inherent propelinear structure of these codes (and their images) when the Butson matrix is cocyclic. Some structural properties of these codes are studied and examples are provided.
Idioma: Inglés
DOI: 10.1007/s10623-022-01110-7
Año: 2022
Publicado en: DESIGNS CODES AND CRYPTOGRAPHY 91 (2022), 333–351
ISSN: 0925-1022

Factor impacto JCR: 1.6 (2022)
Categ. JCR: MATHEMATICS, APPLIED rank: 105 / 267 = 0.393 (2022) - Q2 - T2
Categ. JCR: COMPUTER SCIENCE, THEORY & METHODS rank: 64 / 111 = 0.577 (2022) - Q3 - T2

Factor impacto CITESCORE: 2.8 - Mathematics (Q2) - Computer Science (Q3)

Factor impacto SCIMAGO: 1.033 - Applied Mathematics (Q1) - Theoretical Computer Science (Q1) - Discrete Mathematics and Combinatorics (Q1) - Computer Science Applications (Q1)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2019-104664GB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-15:13:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-12-02, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)