Fractal curves on Banach algebras
Resumen: Most of the fractal functions studied so far run through numerical values. Usually they are supported on sets of real numbers or in a complex field. This paper is devoted to the construction of fractal curves with values in abstract settings such as Banach spaces and algebras, with minimal conditions and structures, transcending in this way the numerical underlying scenario. This is performed via fixed point of an operator defined on a b-metric space of Banach-valued functions with domain on a real interval. The sets of images may provide uniparametric fractal collections of measures, operators or matrices, for instance. The defining operator is linked to a collection of maps (or iterated function system, and the conditions on these mappings determine the properties of the fractal function. In particular, it is possible to define continuous curves and fractal functions belonging to Bochner spaces of Banach-valued integrable functions. As residual result, we prove the existence of fractal functions coming from non-contractive operators as well. We provide new constructions of bases for Banach-valued maps, with a particular mention of spanning systems of functions valued on C*-algebras.
Idioma: Inglés
DOI: 10.3390/fractalfract6120722
Año: 2022
Publicado en: Fractal and fractional 6, 12 (2022), 722 [17 pp.]
ISSN: 2504-3110

Factor impacto JCR: 5.4 (2022)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 9 / 107 = 0.084 (2022) - Q1 - T1
Factor impacto CITESCORE: 3.6 - Mathematics (Q1) - Physics and Astronomy (Q2)

Factor impacto SCIMAGO: 0.627 - Analysis (Q2) - Statistics and Probability (Q2) - Statistical and Nonlinear Physics (Q2)

Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2024-03-18-15:21:54)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2022-12-13, modifiée le 2024-03-19


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)