Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals
Resumen: We consider the highly oscillatory integral () ∶= ∫ ∞ −∞ (+2+) () for large positive values of , − < ≤ , and positive integers with 1 ≤ ≤ , and () an entire function. The standard saddle point method is complicated and we use here a simplified version of this method introduced by López et al. We derive an asymptotic approximation of this integral when → +∞ for general values of and in terms of elementary functions, and determine the Stokes lines. For ≠ 1, the asymptotic behavior of this integral may be classified in four different regions according to the even/odd character of the couple of parameters and ; the special case =1 requires a separate analysis. As an important application, we consider the family of canonical catastrophe integrals Ψ(1, 2,…,) for large values of one of its variables, say , and bounded values of the remaining ones. This family of integrals may be written in the form () for appropriate values of the parameters , and the function (). Then, we derive an asymptotic approximation of the family of canonical catastrophe integrals for large ||. The approximations are accompanied by several numerical experiments. The asymptotic formulas presented here fill up a gap in the NIST Handbook of Mathematical Functions by Olver et al.
Idioma: Inglés
DOI: 10.1111/sapm.12539
Año: 2023
Publicado en: STUDIES IN APPLIED MATHEMATICS 150, 1 (2023), 254-275
ISSN: 0022-2526

Factor impacto JCR: 2.6 (2023)
Categ. JCR: MATHEMATICS, APPLIED rank: 28 / 332 = 0.084 (2023) - Q1 - T1
Factor impacto CITESCORE: 4.3 - Applied Mathematics (Q1)

Factor impacto SCIMAGO: 1.009 - Applied Mathematics (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-11-22-11:57:50)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2023-01-11, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)