Cu fractionation, isotopic analysis, and data processing via machine learning: new approaches for the diagnosis and follow up of Wilson's disease via ICP-MS
Resumen: Information about Cu fractionation and Cu isotopic composition can be paramount when investigating Wilson's disease (WD). This information can provide a better understanding of the metabolism of Cu. Most importantly, it may provide an easy way to diagnose and to follow the evolution of WD patients. For such purposes, protocols for Cu determination and Cu isotopic analysis via inductively coupled plasma mass spectrometry were investigated in this work, both in bulk serum and in the exchangeable copper (CuEXC) fractions. The CuEXC protocol provided satisfactory recovery values. Also, no significant mass fractionation during the whole analytical procedure (CuEXC production and/or Cu isolation) was detected. Analyses were carried out in controls (healthy persons), newborns, patients with hepatic disorders, and WD patients. While the results for Cu isotopic analysis are relevant (e.g., δ65Cu values were lower for both WD patients under chelating treatment and patients with hepatic problems in comparison with those values obtained for WD patients under Zn treatments, controls, and newborns) to comprehend Cu metabolism and to follow up the disease, the parameter that can help to better discern between WD patients and the rest of the patients tested (non-WD) was found to be the REC (relative exchangeable Cu). In this study, all the WD patients showed a REC higher than 17%, while the rest showed lower values. However, since establishing a universal threshold is complicated, machine learning was investigated to produce a model that can differentiate between WD and non-WD samples with excellent results (100% accuracy, albeit for a limited sample set). Most importantly, unlike other ML approaches, our model can also provide an uncertainty metric to indicate the reliability of the prediction, overall opening new ways to diagnose WD.
Idioma: Inglés
DOI: 10.1039/D2JA00267A
Año: 2023
Publicado en: Journal of Analytical Atomic Spectrometry 1, 34 (2023), 229-242
ISSN: 0267-9477

Factor impacto JCR: 3.1 (2023)
Categ. JCR: SPECTROSCOPY rank: 9 / 44 = 0.205 (2023) - Q1 - T1
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 37 / 106 = 0.349 (2023) - Q2 - T2

Factor impacto CITESCORE: 6.2 - Analytical Chemistry (Q2) - Spectroscopy (Q2)

Factor impacto SCIMAGO: 0.722 - Spectroscopy (Q2) - Analytical Chemistry (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI-FEDER/PID2019-105660RB-C21
Financiación: info:eu-repo/grantAgreement/ES/DGA-ESF/T58-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/E43-20R
Financiación: info:eu-repo/grantAgreement/ES/FEDER/Interreg POCTEFA 176-16-DBS
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/PGC2018-093753-B-I00
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Química Analítica (Dpto. Química Analítica)
Área (Departamento): Área Arquit.Tecnología Comput. (Dpto. Informát.Ingenie.Sistms.)


Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2025-01-16-14:42:54)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Arquitectura y Tecnología de Computadores
Artículos > Artículos por área > Química Analítica



 Registro creado el 2023-01-26, última modificación el 2025-01-16


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)