VoxelMorph based Normalization in the Prediction of Stable VS Progressive MCI Conversion with Convolutional Neural Networks
Resumen: El presente trabajo tiene como objetivo estudiar el efecto de la normalización en el sistema de clasificación de Spasov2019 [2] para el problema de deterioro cognitivo leve estable vs progresivo (sMCI vs pMCI), cuando esta normalización proviene de un algoritmo de deep-learning. Se ha elegido VoxelMorph [8], por ser uno de los algoritmos más utilizados como benchmark desde la introducción del deep-learning en el registro deformable de imágenes médicas. Se realizará una comparativa entre los métodos de registro difeomorfo tradicionales y VoxelMorph para este problema.
Idioma: Alemán
DOI: 10.26754/jjii3a.20227018
Año: 2022
Publicado en: Jornada de jóvenes investigadores del I3A 10 (2022), [4 pp.]
ISSN: 2341-4790

Financiación: info:eu-repo/grantAgreement/ES/DGA/T64-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-104358RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/TIN2016-80347-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2023-02-10-09:04:19)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Lenguajes y Sistemas Informáticos



 Record created 2023-02-10, last modified 2023-02-10


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)