Study and Simulation of an Under-Actuated Smart Surface for Material Flow Handling
Financiación H2020 / H2020 Funds
Resumen: Smart surfaces are becoming more and more popular in the field of intralogistics, as they combine great flexibility with easy reprogrammability. Pursuing this trend, the following article proposes a modular surface to perform handling tasks, such as sorting, stopping, or slowing down material flows. Differently from the current technology, the surface used is under-actuated, thus, it exploits the speed, already possessed by the object, or the gravity to perform, with a simplified hardware, for the aforementioned tasks. In practice, these handling actions are completed using an array of rotors, of which only the direction of the rotation axis is controlled. Moreover, the axis can only assume certain discrete orientations in the plane, further simplifying the design. Thus, what is created is a controllable and under-actuated friction field, which, in contrast with similar existing systems, does not require active driving forces to manipulate the material flow. In the article, the analytic model of the surface is described, and a software simulation environment is introduced to demonstrate its functioning. In addition, examples of sorting, slowing down, and stopping operations and a validation of the simulation itself are presented.
Idioma: Inglés
DOI: 10.3390/app13031937
Año: 2023
Publicado en: Applied Sciences (Switzerland) 13, 3 (2023), 1937 [28 pp.]
ISSN: 2076-3417

Factor impacto JCR: 2.5 (2023)
Categ. JCR: ENGINEERING, MULTIDISCIPLINARY rank: 44 / 181 = 0.243 (2023) - Q1 - T1
Categ. JCR: PHYSICS, APPLIED rank: 87 / 179 = 0.486 (2023) - Q2 - T2
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 115 / 231 = 0.498 (2023) - Q2 - T2
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 258 / 439 = 0.588 (2023) - Q3 - T2

Factor impacto CITESCORE: 5.3 - Engineering (all) (Q1) - Computer Science Applications (Q2) - Materials Science (all) (Q2) - Fluid Flow and Transfer Processes (Q2) - Instrumentation (Q2) - Process Chemistry and Technology (Q3)

Factor impacto SCIMAGO: 0.508 - Engineering (miscellaneous) (Q2) - Fluid Flow and Transfer Processes (Q2) - Materials Science (miscellaneous) (Q2) - Instrumentation (Q2) - Process Chemistry and Technology (Q3) - Computer Science Applications (Q3)

Financiación: info:eu-repo/grantAgreement/EC/H2020/814225/EU/DIGItal MANufacturing Technologies for Zero-defect Industry 4.0 Production/DIGIMAN4.0
Tipo y forma: Article (Published version)
Área (Departamento): Área Ing. Procesos Fabricación (Dpto. Ingeniería Diseño Fabri.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-11:58:47)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería de los Procesos de Fabricación



 Record created 2023-02-10, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)