On norm-attainment in (symmetric) tensor products
Resumen: In this paper, we introduce a concept of norm-attainment in the projective symmetric tensor product of a Banach space X, which turns out to be naturally related to the classical norm-attainment of N -homogeneous polynomials on X. Due to this relation, we can prove that there exist symmetric tensors that do not attain their norms, which allows us to study the problem of when the set of norm-attaining elements in is dense. We show that the set of all normattaining symmetric tensors is dense in for a large set of Banach spaces such as Lp-spaces, isometric L1-predual spaces or Banach spaces with monotone Schauder basis, among others. Next, we prove that if X* satisfies the Radon-Nikodým and approximation properties, then the set of all norm-attaining symmetric tensors in is dense. From these techniques, we can present new examples of Banach spaces X and Y such that the set of all norm-attaining tensors in the projective tensor product is dense, answering positively an open question from the paper [10].
Idioma: Inglés
DOI: 10.2989/16073606.2022.2032862
Año: 2022
Publicado en: QUAESTIONES MATHEMATICAE (2022), 1-17
ISSN: 1607-3606

Factor impacto JCR: 0.7 (2022)
Categ. JCR: MATHEMATICS rank: 203 / 329 = 0.617 (2022) - Q3 - T2
Factor impacto CITESCORE: 1.9 - Mathematics (Q2)

Factor impacto SCIMAGO: 0.427 - Mathematics (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI-FEDER/ MTM2017-83262-C2-2-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2024-03-18-14:38:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2023-02-16, modifiée le 2024-03-19


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)