Detection of SARS-CoV-2 Virus by Triplex Enhanced Nucleic Acid Detection Assay (TENADA)
Resumen: SARS-CoV-2, a positive-strand RNA virus has caused devastating effects. The standard method for COVID diagnosis is based on polymerase chain reaction (PCR). The method needs expensive reagents and equipment and well-trained personnel and takes a few hours to be completed. The search for faster solutions has led to the development of immunological assays based on antibodies that recognize the viral proteins that are faster and do not require any special equipment. Here, we explore an innovative analytical approach based on the sandwich oligonucleotide hybridization which can be adapted to several biosensing devices including thermal lateral flow and electrochemical devices, as well as fluorescent microarrays. Polypurine reverse-Hoogsteen hairpins (PPRHs) oligonucleotides that form high-affinity triplexes with the polypyrimidine target sequences are used for the efficient capture of the viral genome. Then, a second labeled oligonucleotide is used to detect the formation of a trimolecular complex in a similar way to antigen tests. The reached limit of detection is around 0.01 nM (a few femtomoles) without the use of any amplification steps. The triplex enhanced nucleic acid detection assay (TENADA) can be readily adapted for the detection of any pathogen requiring only the knowledge of the pathogen genome sequence.
Idioma: Inglés
DOI: 10.3390/ijms232315258
Año: 2022
Publicado en: International Journal of Molecular Sciences 23, 23 (2022), 15258 [20 pp.]
ISSN: 1661-6596

Factor impacto JCR: 5.6 (2022)
Categ. JCR: BIOCHEMISTRY & MOLECULAR BIOLOGY rank: 66 / 285 = 0.232 (2022) - Q1 - T1
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 52 / 178 = 0.292 (2022) - Q2 - T1

Factor impacto CITESCORE: 7.8 - Biochemistry, Genetics and Molecular Biology (Q1) - Computer Science (Q1) - Chemistry (Q1) - Chemical Engineering (Q1) - Medicine (Q1)

Factor impacto SCIMAGO: 1.154 - Medicine (miscellaneous) (Q1) - Physical and Theoretical Chemistry (Q1) - Computer Science Applications (Q1) - Inorganic Chemistry (Q1) - Spectroscopy (Q1) - Organic Chemistry (Q1) - Molecular Biology (Q2) - Catalysis (Q2)

Financiación: info:eu-repo/grantAgreement/ES/CSIC/COV19-041
Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E15-17R
Financiación: info:eu-repo/grantAgreement/ES/IACS/PT20-00112
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/CB16-01/00263
Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-16:53:48)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2023-02-16, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)