Integration of carbon capture technologies in blast furnace based steel making: a comprehensive and systematic review

Perpiñán, J. (Universidad de Zaragoza) ; Peña, B. (Universidad de Zaragoza) ; Bailera, M. (Universidad de Zaragoza) ; Eveloy, V. ; Kannan, P. ; Raj, A. ; Lisbona, P. (Universidad de Zaragoza) ; Romeo, L. M. (Universidad de Zaragoza)
Integration of carbon capture technologies in blast furnace based steel making: a comprehensive and systematic review
Financiación H2020 / H2020 Funds
Resumen: Decarbonization of the iron and steel industry, which accounts for 7–9% of global annual emissions, is a strategic objective to achieve carbon emissions reduction targets in line with climate change policies, while maintaining economic competitiveness. Carbon capture (CC) technologies are of critical importance to achieve these goals. This work presents the first systematic review of the integration of CC technologies in the blast furnace-basic oxygen furnace (BF-BOF) steelmaking route, which is expected to maintain a dominant market share over the coming decades. Integration options for post-combustion, looping cycles, oxy-combustion and pre-combustion are described and compared in terms of energy penalty, carbon emissions abatement potential, cost, technology readiness level, and practical deployment considerations. The review yielded 188 studies from peer-reviewed articles and technical papers. Research is mainly focused on chemical absorption, physical adsorption, and oxy-blast furnace technologies, but other carbon capture methods including calcium looping, Sorption Enhanced Water Gas Shift, and membranes appear promising in terms of cost and carbon emission reduction. This article provides an in-depth analysis of the current state of the art and crucial considerations for future decision making in the techno-economic selection and integration of CC technologies. Barriers to overcome for practical implementation are also identified and discussed in this article.
Idioma: Inglés
DOI: 10.1016/j.fuel.2022.127074
Año: 2023
Publicado en: Fuel 336 (2023), 127074 [30 pp.]
ISSN: 0016-2361

Factor impacto JCR: 6.7 (2023)
Categ. JCR: ENGINEERING, CHEMICAL rank: 23 / 170 = 0.135 (2023) - Q1 - T1
Categ. JCR: ENERGY & FUELS rank: 46 / 170 = 0.271 (2023) - Q2 - T1

Factor impacto CITESCORE: 12.8 - Chemical Engineering (all) (Q1) - Organic Chemistry (Q1) - Fuel Technology (Q1) - Energy Engineering and Power Technology (Q1)

Factor impacto SCIMAGO: 1.451 - Chemical Engineering (miscellaneous) (Q1) - Organic Chemistry (Q1) - Fuel Technology (Q1) - Energy Engineering and Power Technology (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/887077/EU/Decarbonisation of carbon-intensive industries (Iron and Steel Industries) through Power to gas and Oxy-fuel combustion/DISIPO
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2021-126164OB-I00/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/UZ/JIUZ-2020-TEC-06
Tipo y forma: Article (Published version)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2024-07-31-09:42:47)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2023-02-16, last modified 2024-07-31


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)