Resumen: The critical length of a space of functions can be described as the supremum of the length of the intervals where Hermite interpolation problems are unisolvent for any choice of nodes. We analyze the critical length for spaces containing products of algebraic polynomials and trigonometric functions. We show the relation of these spaces with spherical Bessel functions and bound above their critical length by the first positive zero of a Bessel function of the first kind. Idioma: Inglés DOI: 10.1007/s13398-022-01365-8 Año: 2023 Publicado en: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 117 (2023), 29 [11 pp] ISSN: 1578-7303 Factor impacto JCR: 1.8 (2023) Categ. JCR: MATHEMATICS rank: 39 / 490 = 0.08 (2023) - Q1 - T1 Factor impacto CITESCORE: 4.7 - Applied Mathematics (Q1) - Computational Mathematics (Q1) - Analysis (Q1) - Geometry and Topology (Q1) - Algebra and Number Theory (Q1)