An asymptotic expansion of the hyberbolic umbilic catastrophe integral
Resumen: We obtain an asymptotic expansion of the hyperbolic umbilic catastrophe integral Ψ(H)(x,y,z):=∫∞−∞∫∞−∞exp(i(s3+t3+zst+yt+xs))dsdt for large values of |x| and bounded values of |y| and |z|. The expansion is given in terms of Airy functions and inverse powers of x. There is only one Stokes ray at argx=π. We use the modified saddle point method introduced in (López et al. J Math Anal Appl 354(1):347–359, 2009). The accuracy and the asymptotic character of the approximations are illustrated with numerical experiments.
Idioma: Inglés
DOI: 10.1007/s11139-022-00675-0
Año: 2023
Publicado en: RAMANUJAN JOURNAL 61, 3 (2023), 921–933
ISSN: 1382-4090

Factor impacto JCR: 0.6 (2023)
Categ. JCR: MATHEMATICS rank: 264 / 490 = 0.539 (2023) - Q3 - T2
Factor impacto CITESCORE: 1.4 - Algebra and Number Theory (Q2)

Factor impacto SCIMAGO: 0.712 - Algebra and Number Theory (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-11:58:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2023-02-24, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)