000124360 001__ 124360
000124360 005__ 20240319081028.0
000124360 0247_ $$2doi$$a10.1098/rsos.220552
000124360 0248_ $$2sideral$$a132774
000124360 037__ $$aART-2022-132774
000124360 041__ $$aeng
000124360 100__ $$aBory Prevez, Henry
000124360 245__ $$aSimulations of surface charge density changes during the untreated solid tumour growth
000124360 260__ $$c2022
000124360 5060_ $$aAccess copy available to the general public$$fUnrestricted
000124360 5203_ $$aUnderstanding untreated tumour growth kinetics and its intrinsic behaviour is interesting and intriguing. The aim of this study is to propose an approximate analytical expression that allows us to simulate changes in surface charge density at the cancer-surrounding healthy tissue interface during the untreated solid tumour growth. For this, the Gompertz and Poisson equations are used. Simulations reveal that the unperturbed solid tumour growth is closely related to changes in the surface charge density over time between the tumour and the surrounding healthy tissue. Furthermore, the unperturbed solid tumour growth is governed by temporal changes in this surface charge density. It is concluded that results corroborate the correspondence between the electrical and physiological parameters in the untreated cancer, which may have an essential role in its growth, progression, metastasis and protection against immune system attack and anti-cancer therapies. In addition, the knowledge of surface charge density changes at the cancer-surrounding healthy tissue interface may be relevant when redesigning the molecules in chemotherapy and immunotherapy taking into account their polarities. This can also be true in the design of completely novel therapies.
000124360 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-109045GB-C31
000124360 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000124360 590__ $$a3.5$$b2022
000124360 592__ $$a0.841$$b2022
000124360 591__ $$aMULTIDISCIPLINARY SCIENCES$$b28 / 73 = 0.384$$c2022$$dQ2$$eT2
000124360 593__ $$aMultidisciplinary$$c2022$$dQ1
000124360 594__ $$a6.0$$b2022
000124360 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000124360 700__ $$aSoutelo Jimenez, Argenis Adrian
000124360 700__ $$aRoca Oria, Eduardo José
000124360 700__ $$aHeredia Kindelán, José Alejandro
000124360 700__ $$aMorales González, Maraelys
000124360 700__ $$aVillar Goris, Narciso Antonio
000124360 700__ $$aHernández Mesa, Nibaldo
000124360 700__ $$aSierra González, Victoriano Gustavo
000124360 700__ $$aInfantes Frometa, Yenia
000124360 700__ $$0(orcid)0000-0001-6120-4427$$aMontijano, Juan Ignacio$$uUniversidad de Zaragoza
000124360 700__ $$aBergues Cabrales, Luis Enrique
000124360 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000124360 773__ $$g9, 11 (2022), 220552 [16 pp.]$$pR. Soc. open sci.$$tRoyal Society Open Science$$x2054-5703
000124360 8564_ $$s767224$$uhttps://zaguan.unizar.es/record/124360/files/texto_completo.pdf$$yVersión publicada
000124360 8564_ $$s1942421$$uhttps://zaguan.unizar.es/record/124360/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000124360 909CO $$ooai:zaguan.unizar.es:124360$$particulos$$pdriver
000124360 951__ $$a2024-03-18-16:54:34
000124360 980__ $$aARTICLE