Big data and machine learning to improve european grapevine moth (Lobesia botrana) predictions
Resumen: Machine Learning (ML) techniques can be used to convert Big Data into valuable information for agri-environmental applications, such as predictive pest modeling. Lobesia botrana (Denis & Schiffermüller) 1775 (Lepidoptera: Tortricidae) is one of the main pests of grapevine, causing high productivity losses in some vineyards worldwide. This work focuses on the optimization of the Touzeau model, a classical correlation model between temperature and L. botrana development using data-driven models. Data collected from field observations were combined with 30 GB of registered weather data updated every 30 min to train the ML models and make predictions on this pest’s flights, as well as to assess the accuracy of both Touzeau and ML models. The results obtained highlight a much higher F1 score of the ML models in comparison with the Touzeau model. The best-performing model was an artificial neural network of four layers, which considered several variables together and not only the temperature, taking advantage of the ability of ML models to find relationships in nonlinear systems. Despite the room for improvement of artificial intelligence-based models, the process and results presented herein highlight the benefits of ML applied to agricultural pest management strategies.
Idioma: Inglés
DOI: 10.3390/plants12030633
Año: 2023
Publicado en: Plants 12, 3 (2023), 633 [16 pp.]
ISSN: 2223-7747

Factor impacto JCR: 4.0 (2023)
Categ. JCR: PLANT SCIENCES rank: 46 / 265 = 0.174 (2023) - Q1 - T1
Factor impacto CITESCORE: 6.5 - Ecology, Evolution, Behavior and Systematics (Q1) - Plant Science (Q1) - Ecology (Q1)

Factor impacto SCIMAGO: 0.795 - Ecology (Q1) - Plant Science (Q1) - Ecology, Evolution, Behavior and Systematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-113037RB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T17-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/T64-23R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Producción Vegetal (Dpto. CC.Agrar.y Medio Natural)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-12:06:18)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-03-23, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)