Bidiagonal decompositions of Vandermonde-type matrices of arbitrary rank
Resumen: We present a method to derive new explicit expressions for bidiagonal decompositions of Vandermonde and related matrices such as the (-, -) Bernstein-Vandermonde ones, among others. These results generalize the existing expressions for nonsingular matrices to matrices of arbitrary rank. For totally nonnegative matrices of the above classes, the new decompositions can be computed efficiently and to high relative accuracy componentwise in floating point arithmetic. In turn, matrix computations (e.g., eigenvalue computation) can also be performed efficiently and to high relative accuracy.
Idioma: Inglés
DOI: 10.1016/j.cam.2023.115064
Año: 2023
Publicado en: Journal of Computational and Applied Mathematics 426 (2023), 115064 [15 pp.]
ISSN: 0377-0427

Factor impacto JCR: 2.1 (2023)
Categ. JCR: MATHEMATICS, APPLIED rank: 53 / 332 = 0.16 (2023) - Q1 - T1
Factor impacto CITESCORE: 5.4 - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Factor impacto SCIMAGO: 0.858 - Computational Mathematics (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-17R
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI/PGC2018-096321-B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2024-11-22-12:08:00)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2023-03-23, modifiée le 2024-11-25


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)