A multistate model and its standalone tool to predict hospital and ICU occupancy by patients with COVID-19

Lafuente, M. (Universidad de Zaragoza) ; López, F. J. (Universidad de Zaragoza) ; Mateo, P. M. (Universidad de Zaragoza) ; Cebrián, A. C. (Universidad de Zaragoza) ; Asín, J. (Universidad de Zaragoza) ; Moler, J. A. ; Borque-Fernando, Á. (Universidad de Zaragoza) ; Esteban, L. M. ; Pérez-Palomares, A. (Universidad de Zaragoza) ; Sanz, G. (Universidad de Zaragoza)
A multistate model and its standalone tool to predict hospital and ICU occupancy by patients with COVID-19
Resumen: Objective: This study aims to build a multistate model and describe a predictive tool for estimating the daily number of intensive care unit (ICU) and hospital beds occupied by patients with coronavirus 2019 disease (COVID-19). Material and methods: The estimation is based on the simulation of patient trajectories using a multistate model where the transition probabilities between states are estimated via competing risks and cure models. The input to the tool includes the dates of COVID-19 diagnosis, admission to hospital, admission to ICU, discharge from ICU and discharge from hospital or death of positive cases from a selected initial date to the current moment. Our tool is validated using 98,496 cases positive for severe acute respiratory coronavirus 2 extracted from the Aragón Healthcare Records Database from July 1, 2020 to February 28, 2021. Results: The tool demonstrates good performance for the 7- and 14-days forecasts using the actual positive cases, and shows good accuracy among three scenarios corresponding to different stages of the pandemic: 1) up-scenario, 2) peak-scenario and 3) down-scenario. Long term predictions (two months) also show good accuracy, while those using Holt-Winters positive case estimates revealed acceptable accuracy to day 14 onwards, with relative errors of 8.8%. Discussion: In the era of the COVID-19 pandemic, hospitals must evolve in a dynamic way. Our prediction tool is designed to predict hospital occupancy to improve healthcare resource management without information about clinical history of patients. Conclusions: Our easy-to-use and freely accessible tool (https://github.com/peterman65) shows good performance and accuracy for forecasting the daily number of hospital and ICU beds required for patients with COVID-19.
Idioma: Inglés
DOI: 10.1016/j.heliyon.2023.e13545
Año: 2023
Publicado en: Heliyon 9, 2 (2023), e13545 [18 pp.]
ISSN: 2405-8440

Factor impacto JCR: 3.4 (2023)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 28 / 134 = 0.209 (2023) - Q1 - T1
Factor impacto CITESCORE: 4.5 - Multidisciplinary (Q1)

Factor impacto SCIMAGO: 0.617 - Multidisciplinary (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E46-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-116873GB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)
Área (Departamento): Área Urología (Dpto. Cirugía)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-11-22-12:05:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Estadística e Investigación Operativa
Articles > Artículos por área > Urología



 Record created 2023-03-30, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)