Hybrid Twin in Complex System Settings

Sancarlos González, Abel
Cueto Prendes, Elías (dir.) ; Chinesta Soria, Francisco José (dir.)

Universidad de Zaragoza, 2021


Resumen: Los beneficios de un conocimiento profundo de los procesos tecnológicos e industriales de nuestro mundo son incuestionables. La optimización, el análisis inverso o el control basado en la simulación son algunos de los procedimientos que pueden llevarse a cabo una vez que los conocimientos anteriores se transforman en valor para las empresas. Con ello se consiguen mejores tecnologías que acaban beneficiando enormemente a la sociedad. Pensemos en una actividad rutinaria para muchas personas hoy en día, como coger un avión. Todos los procedimientos anteriores se llevan a cabo en el diseño del avión, en el control a bordo y en el mantenimiento, lo que culmina en un producto tecnológicamente eficiente en cuanto a recursos. Este alto valor añadido es lo que está impulsando a la Ciencia de la Ingeniería Basada en la Simulación (Simulation Based Engineering Science, SBES) a introducir importantes mejoras en estos procedimientos, lo que ha supuesto avances importantes en una gran variedad de sectores como la sanidad, las telecomunicaciones o la ingeniería.
Sin embargo, la SBES se enfrenta actualmente a varias dificultades para proporcionar resultados precisos en escenarios industriales complejos. Una de ellas es el elevado coste computacional asociado a muchos problemas industriales, que limita seriamente o incluso inhabilita los procesos clave descritos anteriormente. Otro problema es que, en otras aplicaciones, los modelos más precisos (que a su vez son los más caros computacionalmente) no son capaces de tener en cuenta todos los detalles que rigen el sistema físico estudiado, con desviaciones observadas que parecen escapar de nuestro conocimiento.
Por lo tanto, en este contexto, a lo largo de este manuscrito se proponen novedosas estrategias y técnicas numéricas para hacer frente a los retos a los que se enfrenta la SBES. Para ello, se analizan diferentes aplicaciones industriales.
El panorama anterior junto con el exhaustivo desarrollo producido en la Ciencia de Datos, brinda además una oportunidad perfecta para los denominados Dynamic Data Driven Application Systems (DDDAS), cuyo objetivo principal es fusionar los algoritmos clásicos de simulación con los datos procedentes de medidas experimentales. En este escenario, los datos y las simulaciones ya no estarían desacoplados, sino que formarían una relación simbiótica que alcanzaría hitos inconcebibles hasta estos días. Más en detalle, los datos ya no se entenderán como una calibración estática de un determinado modelo constitutivo, sino que el modelo se corregirá dinámicamente tan pronto como los datos experimentales y las simulaciones tiendan a diverger.
Por esta razón, la presente tesis ha hecho especial énfasis en las técnicas de reducción de modelos, ya que no sólo son una herramienta para reducir la complejidad computacional, sino también un elemento clave para cumplir con las restricciones de tiempo real que surgen del marco de los DDDAS.
Además, esta tesis presenta nuevas metodologías basadas en datos para enriquecer el denominado paradigma Hybrid Twin. Un paradigma cuya motivación radica en su habilidad de posibilitar los DDDAS. ¿Cómo? combinando soluciones paramétricas y técnicas de reducción de modelos con correcciones dinámicas generadas “al vuelo'' basadas en los datos experimentales recogidos en cada instante.


Resumen (otro idioma): 

Pal. clave: ingeniería civil

Titulación: Programa de Doctorado en Ingeniería Mecánica
Plan(es): Plan 514
Nota: Presentado: 29 10 2021
Nota: Tesis-Univ. Zaragoza, , 2021


-



Creative Commons License



Visitas y descargas



 Registro creado el 2023-03-31, última modificación el 2023-03-31


Texto completo:
Descargar el texto completo
PDF

Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)