Machine Learning models for the estimation of the production of large utility-scale photovoltaic plants
Resumen: Photovoltaic (PV) energy development has increased in the last years mainly based on large utility-scale plants. These plants are characterised by a huge number of panels connected to high-power inverters occupying a large land area. An accurate estimation of the power production of the PV plants is needed for failure detection, identifying production deviations, and the integration of the plants into the power grid. Various studies have used Machine Learning estimation techniques developed on very small PV plants. This paper deals with large utility-scale plants and uses all the available information to represent the non-uniform radiation over the whole studied solar field. Variables measured in up to four meteorological stations and distributed across the plant are used. Three PV plants with 1, 2 and 4 meteorological stations have been used to develop Machine Learning models. The hyperparameters were systematically optimised, demonstrating the improvements by comparing with a simple model based on Multiple Linear Regression. The best results were obtained with the Random Forest technique for the three PV plants, providing a RMS error value ranging from 1.9% to 5.4%. The final models were compared with those found in the literature for tiny PV plants showing in general much better performance.
Idioma: Inglés
DOI: 10.1016/j.solener.2023.03.007
Año: 2023
Publicado en: Solar Energy 254 (2023), 88-101
ISSN: 0038-092X

Factor impacto JCR: 6.0 (2023)
Categ. JCR: ENERGY & FUELS rank: 54 / 171 = 0.316 (2023) - Q2 - T1
Factor impacto CITESCORE: 13.9 - Materials Science (all) (Q1) - Renewable Energy, Sustainability and the Environment (Q1)

Factor impacto SCIMAGO: 1.311 - Renewable Energy, Sustainability and the Environment (Q1) - Materials Science (miscellaneous) (Q1)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-11-22-12:00:45)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-04-20, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)