000125790 001__ 125790 000125790 005__ 20241125101135.0 000125790 0247_ $$2doi$$a10.1021/acsnano.2c09754 000125790 0248_ $$2sideral$$a133193 000125790 037__ $$aART-2023-133193 000125790 041__ $$aeng 000125790 100__ $$aCohen, Assael 000125790 245__ $$aTungsten oxide mediated quasi-van der Waals Epitaxy of WS2 on Sapphire 000125790 260__ $$c2023 000125790 5060_ $$aAccess copy available to the general public$$fUnrestricted 000125790 5203_ $$aConventional epitaxy plays a crucial role in current state-of-the art semiconductor technology, as it provides a path for accurate control at the atomic scale of thin films and nanostructures, to be used as the building blocks in nanoelectronics, optoelectronics, sensors, etc. Four decades ago, the terms “van der Waals” (vdW) and “quasi-vdW (Q-vdW) epitaxy” were coined to explain the oriented growth of vdW layers on 2D and 3D substrates, respectively. The major difference with conventional epitaxy is the weaker interaction between the epi-layer and the epi-substrates. Indeed, research on Q-vdW epitaxial growth of transition metal dichalcogenides (TMDCs) has been intense, with oriented growth of atomically thin semiconductors on sapphire being one of the most studied systems. Nonetheless, there are some striking and not yet understood differences in the literature regarding the orientation registry between the epi-layers and epi-substrate and the interface chemistry. Here we study the growth of WS2 via a sequential exposure of the metal and the chalcogen precursors in a metal–organic chemical vapor deposition (MOCVD) system, introducing a metal-seeding step prior to the growth. The ability to control the delivery of the precursor made it possible to study the formation of a continuous and apparently ordered WO3 mono- or few-layer at the surface of a c-plane sapphire. Such an interfacial layer is shown to strongly influence the subsequent quasi-vdW epitaxial growth of the atomically thin semiconductor layers on sapphire. Hence, here we elucidate an epitaxial growth mechanism and demonstrate the robustness of the metal-seeding approach for the oriented formation of other TMDC layers. This work may enable the rational design of vdW and quasi-vdW epitaxial growth on different material systems. 000125790 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-20R$$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3$$9info:eu-repo/grantAgreement/EC/H2020/889546/EU/Properties of nanomaterials made from misfit-layered compounds revealed by electron microscopy and simulations/PROMISES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 889546-PROMISES$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104739GB-I00/AEI-10.13039-501100011033 000125790 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000125790 590__ $$a15.8$$b2023 000125790 592__ $$a4.593$$b2023 000125790 591__ $$aCHEMISTRY, PHYSICAL$$b14 / 178 = 0.079$$c2023$$dQ1$$eT1 000125790 593__ $$aEngineering (miscellaneous)$$c2023$$dQ1 000125790 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b11 / 141 = 0.078$$c2023$$dQ1$$eT1 000125790 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1 000125790 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b15 / 231 = 0.065$$c2023$$dQ1$$eT1 000125790 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ1 000125790 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b27 / 439 = 0.062$$c2023$$dQ1$$eT1 000125790 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1 000125790 594__ $$a26.0$$b2023 000125790 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000125790 700__ $$aMohapatra, Pranab K. 000125790 700__ $$0(orcid)0000-0002-9102-7895$$aHettler, Simon$$uUniversidad de Zaragoza 000125790 700__ $$aPatsha, Avinash 000125790 700__ $$aNarayanachari, K. V. L. V. 000125790 700__ $$aShekhter, Pini 000125790 700__ $$aCavin, John 000125790 700__ $$aRondinelli, James M. 000125790 700__ $$aBedzyk, Michael 000125790 700__ $$aDieguez, Oswaldo 000125790 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, Raul 000125790 700__ $$aIsmach, Ariel 000125790 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000125790 773__ $$g17, 6 (2023), 5399-5411$$pACS Nano$$tACS NANO$$x1936-0851 000125790 8564_ $$s11992613$$uhttps://zaguan.unizar.es/record/125790/files/texto_completo.pdf$$yVersión publicada 000125790 8564_ $$s3323004$$uhttps://zaguan.unizar.es/record/125790/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000125790 909CO $$ooai:zaguan.unizar.es:125790$$particulos$$pdriver 000125790 951__ $$a2024-11-22-12:00:46 000125790 980__ $$aARTICLE