Coronary artery properties in atherosclerosis: A deep learning predictive model
Resumen: In this work an Artificial Neural Network (ANN) was developed to help in the diagnosis of plaque vulnerability by predicting the Young modulus of the core (Ecore) and the plaque (Eplaque) of atherosclerotic coronary arteries. A representative in silico database was constructed to train the ANN using Finite Element simulations covering the ranges of mechanical properties present in the bibliography. A statistical analysis to pre-process the data and determine the most influential variables was performed to select the inputs of the ANN. The ANN was based on Multilayer Perceptron architecture and trained using the developed database, resulting in a Mean Squared Error (MSE) in the loss function under 10–7, enabling accurate predictions on the test dataset for Ecore and Eplaque. Finally, the ANN was applied to estimate the mechanical properties of 10,000 realistic plaques, resulting in relative errors lower than 3%.
Idioma: Inglés
DOI: 10.3389/fphys.2023.1162436
Año: 2023
Publicado en: Frontiers in physiology 14 (2023), 1162436 [11 pp.]
ISSN: 1664-042X

Factor impacto JCR: 3.2 (2023)
Categ. JCR: PHYSIOLOGY rank: 24 / 85 = 0.282 (2023) - Q2 - T1
Factor impacto CITESCORE: 6.5 - Physiology (medical) (Q2) - Physiology (Q2)

Factor impacto SCIMAGO: 1.006 - Physiology (medical) (Q2) - Physiology (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-107517RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN PRE2020-095671
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)
Exportado de SIDERAL (2024-07-31-10:00:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2023-05-16, modifiée le 2024-07-31


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)