000126031 001__ 126031
000126031 005__ 20240731103406.0
000126031 0247_ $$2doi$$a10.1021/acsnano.3c00388
000126031 0248_ $$2sideral$$a133533
000126031 037__ $$aART-2023-133533
000126031 041__ $$aeng
000126031 100__ $$aGu, Y.
000126031 245__ $$aLocal temperature increments and induced cell death in intracellular magnetic hyperthermia
000126031 260__ $$c2023
000126031 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126031 5203_ $$aThe generation of temperature gradients on nanoparticles heated externally by a magnetic field is crucially important in magnetic hyperthermia therapy. But the intrinsic low heating power of magnetic nanoparticles, at the conditions allowed for human use, is a limitation that restricts the general implementation of the technique. A promising alternative is local intracellular hyperthermia, whereby cell death (by apoptosis, necroptosis, or other mechanisms) is attained by small amounts of heat generated at thermosensitive intracellular sites. However, the few experiments conducted on the temperature determination of magnetic nanoparticles have found temperature increments that are much higher than the theoretical predictions, thus supporting the local hyperthermia hypothesis. Reliable intracellular temperature measurements are needed to get an accurate picture and resolve the discrepancy. In this paper, we report the real-time variation of the local temperature on γ-Fe2O3 magnetic nanoheaters using a Sm3+/Eu3+ ratiometric luminescent thermometer located on its surface during exposure to an external alternating magnetic field. We measure maximum temperature increments of 8 °C on the surface of the nanoheaters without any appreciable temperature increase on the cell membrane. Even with magnetic fields whose frequency and intensity are still well within health safety limits, these local temperature increments are sufficient to produce a small but noticeable cell death, which is enhanced considerably as the magnetic field intensity is increased to the maximum level tolerated for human use, consequently demonstrating the feasibility of local hyperthermia.
000126031 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E11-17R$$9info:eu-repo/grantAgreement/ES/DGA/LMP220_21$$9info:eu-repo/grantAgreement/EC/H2020/801305/EU/Nanoparticles-based 2D thermal bioimaging technologies/NanoTBTech$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 801305-NanoTBTech$$9info:eu-repo/grantAgreement/EC/H2020/829162/EU/Redesigning biocatalysis: Thermal-tuning of one-pot multienzymatic cascades by nanoactuation/HOTZYMES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 829162-HOTZYMES$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-095795-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-124354NB-I00
000126031 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126031 590__ $$a15.8$$b2023
000126031 592__ $$a4.593$$b2023
000126031 591__ $$aCHEMISTRY, PHYSICAL$$b14 / 178 = 0.079$$c2023$$dQ1$$eT1
000126031 593__ $$aEngineering (miscellaneous)$$c2023$$dQ1
000126031 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b11 / 140 = 0.079$$c2023$$dQ1$$eT1
000126031 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1
000126031 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b14 / 230 = 0.061$$c2023$$dQ1$$eT1
000126031 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ1
000126031 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b27 / 438 = 0.062$$c2023$$dQ1$$eT1
000126031 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000126031 594__ $$a26.0$$b2023
000126031 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126031 700__ $$0(orcid)0000-0001-7625-4806$$aPiñol, R.
000126031 700__ $$0(orcid)0000-0002-6600-1618$$aMoreno-Loshuertos, R.$$uUniversidad de Zaragoza
000126031 700__ $$aBrites, C. D. S.
000126031 700__ $$aZeler, J.
000126031 700__ $$0(orcid)0000-0002-8797-0813$$aMartínez, A.$$uUniversidad de Zaragoza
000126031 700__ $$0(orcid)0000-0003-4520-8772$$aMaurin-Pasturel, G.
000126031 700__ $$0(orcid)0000-0001-8971-7355$$aFernández-Silva, P.$$uUniversidad de Zaragoza
000126031 700__ $$aMarco-Brualla, J.$$uUniversidad de Zaragoza
000126031 700__ $$0(orcid)0000-0002-1819-4785$$aTéllez, P.$$uUniversidad de Zaragoza
000126031 700__ $$0(orcid)0000-0002-9258-7907$$aCases, R.$$uUniversidad de Zaragoza
000126031 700__ $$aNavarro Belsué, R.
000126031 700__ $$aBonvin, D.
000126031 700__ $$aCarlos, L. D.
000126031 700__ $$0(orcid)0000-0003-0828-3212$$aMillán, Á.
000126031 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000126031 7102_ $$10$$2X$$aUniversidad de Zaragoza$$bServ.Gral. Apoyo Investigación$$cDivisión: Serv. Transversales
000126031 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000126031 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000126031 773__ $$g17, 7 (2023), 6822-6832$$pACS Nano$$tACS NANO$$x1936-0851
000126031 8564_ $$s7371828$$uhttps://zaguan.unizar.es/record/126031/files/texto_completo.pdf$$yVersión publicada
000126031 8564_ $$s3140105$$uhttps://zaguan.unizar.es/record/126031/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126031 909CO $$ooai:zaguan.unizar.es:126031$$particulos$$pdriver
000126031 951__ $$a2024-07-31-10:01:36
000126031 980__ $$aARTICLE