000126418 001__ 126418
000126418 005__ 20241125101137.0
000126418 0247_ $$2doi$$a10.3390/s23094410
000126418 0248_ $$2sideral$$a133915
000126418 037__ $$aART-2023-133915
000126418 041__ $$aeng
000126418 100__ $$0(orcid)0000-0003-0365-6702$$aAparicio-Téllez, Raúl$$uUniversidad de Zaragoza
000126418 245__ $$aOscillator Selection Strategies to Optimize a Physically Unclonable Function for IoT Systems Security
000126418 260__ $$c2023
000126418 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126418 5203_ $$aPhysically unclonable functions avoid storing secret information in non-volatile memories and only generate a key when it is necessary for an application, rising as a promising solution for the authentication of resource-constrained IoT devices. However, the need to minimize the predictability of physically unclonable functions is evident. The main purpose of this work is to determine the optimal way to construct a physically unclonable function. To do this, a ring oscillator physically unclonable function based on comparing oscillators in pairs has been implemented in an FPGA. This analysis shows that the frequencies of the oscillators greatly vary depending on their position in the FPGA, especially between oscillators implemented in different types of slices. Furthermore, the influence of the chosen locations of the ring oscillators on the quality of the physically unclonable function has been analyzed and we propose five strategies to select the locations of the oscillators. Among the strategies proposed, two of them stand out for their high uniqueness, reproducibility, and identifiability, so they can be used for authentication purposes. Finally, we have analyzed the reproducibility for the best strategy facing voltage and temperature variations, showing that it remains stable in the studied range.
000126418 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-114110RA-I00$$9info:eu-repo/grantAgreement/ES/DGA/LMP197-21$$9nfo:eu-repo/grantAgreement/ES/UZ/CUD2021-02
000126418 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126418 590__ $$a3.4$$b2023
000126418 592__ $$a0.786$$b2023
000126418 591__ $$aCHEMISTRY, ANALYTICAL$$b34 / 106 = 0.321$$c2023$$dQ2$$eT1
000126418 593__ $$aInstrumentation$$c2023$$dQ1
000126418 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b24 / 76 = 0.316$$c2023$$dQ2$$eT1
000126418 593__ $$aAnalytical Chemistry$$c2023$$dQ1
000126418 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b122 / 353 = 0.346$$c2023$$dQ2$$eT2
000126418 593__ $$aAtomic and Molecular Physics, and Optics$$c2023$$dQ1
000126418 593__ $$aInformation Systems$$c2023$$dQ2
000126418 593__ $$aMedicine (miscellaneous)$$c2023$$dQ2
000126418 593__ $$aBiochemistry$$c2023$$dQ2
000126418 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ2
000126418 594__ $$a7.3$$b2023
000126418 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126418 700__ $$0(orcid)0000-0001-8648-6248$$aGarcia-Bosque, Miguel$$uUniversidad de Zaragoza
000126418 700__ $$0(orcid)0000-0001-9131-0861$$aDíez-Señorans, Guillermo$$uUniversidad de Zaragoza
000126418 700__ $$0(orcid)0000-0003-0182-7723$$aCelma, Santiago$$uUniversidad de Zaragoza
000126418 7102_ $$15008$$2250$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Electrónica
000126418 773__ $$g23, 9 (2023), 4410 [18 pp.]$$pSensors$$tSensors$$x1424-8220
000126418 8564_ $$s937471$$uhttps://zaguan.unizar.es/record/126418/files/texto_completo.pdf$$yVersión publicada
000126418 8564_ $$s2760420$$uhttps://zaguan.unizar.es/record/126418/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126418 909CO $$ooai:zaguan.unizar.es:126418$$particulos$$pdriver
000126418 951__ $$a2024-11-22-12:01:12
000126418 980__ $$aARTICLE