Numerical analysis of the fluid flow and heat transfer of a hybrid PV-thermal collector and performance assessment
Resumen: In recent years, new materials and absorber configurations have been proposed to improve the performance of hybrid photovoltaic-thermal (PV-T) collectors. This work analyses the fluid flow and the energy performance of an uncovered water-based PV-T collector with a roll-bond thermal absorber. A detailed CFD model was developed and the results were compared with the experimental performance features provided by the PV-T manufacturer. The fluid flow results show uneven flow distribution among the roll-bond microchannels which leads to areas with larger PV cell temperatures and thus a lower electricity generation. The PV-T collector layers were also modelled using the energy transfer equations layer-by-layer. The model was run for several water inlet temperatures and water flow-rates to obtain the thermal performance curve. The results show that the electrical efficiency of the PV-T collector is 14.5–10.3% larger than for a PV-only system for water inlet temperatures of 20–30 °C, respectively. The developed CFD model reproduces accurately the thermal performance of the PV-T collector, with a maximum error of 6.5% for inlet water temperatures of 20–60 °C. Therefore, this model can be used with confidence to propose alternative designs that achieve a homogeneous temperature distribution in the PV layer and improve the overall PV-T collector performance.
Idioma: Inglés
DOI: 10.1016/j.renene.2023.03.125
Año: 2023
Publicado en: Renewable Energy 209 (2023), 122-132
ISSN: 0960-1481

Financiación: info:eu-repo/grantAgreement/ES/MCIU-FEDER/RTC-2017-6026-3
Financiación: info:eu-repo/grantAgreement/ES/MCIU/IJC-2020-043717-I
Tipo y forma: Article (Published version)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)
Exportado de SIDERAL (2023-06-21-14:50:51)

Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:

 Notice créée le 2023-06-21, modifiée le 2023-06-21

Versión publicada:
Évaluer ce document:

Rate this document:
(Pas encore évalué)