QT interval time lag in response to heart rate changes during stress test for Coronary Artery Disease diagnosis
Resumen: Background: Slow adaptation of the QT interval to abrupt changes in heart rate (HR) can enhance ventricular heterogeneity and has been suggested as a marker of arrhythmic risk. Most investigations on QT rate adaptation lag have been performed in response to step-like HR changes. However, abrupt HR changes are difficult to induce or observe in ECG recordings under ambulatory conditions.

Objective: We aim to evaluate the power of indices related to the QT lag in response to ramp-like HR changes in stress test to assess CAD risk.

Methods: We quantified the lag between the actual QT series and the memoryless expected QT series, which was obtained by fitting a hyperbolic regression model to the instantaneous QT and HR measurements in stages where their behavior could be assumed stationary. The proposed methodology was applied to analyze ECG stress tests of a subset of 448 patients presenting different risk levels for Coronary Artery Disease (CAD). The QT lag was estimated separately in the exercise and recovery phases.

Results: An increase in the estimated QT lag during exercise (from 25 to 36 s) and a decrease during recovery (from 57 to 39 s) were associated with higher CAD risk. The difference between these lags showed significant capacity for CAD risk stratification.

Conclusion: The QT lag in response to HR changes can be quantified from a stress test. QT lag values in response to ramp-like HR changes are in ranges comparable to those quantified from abrupt HR changes and show clinical significance to stratify CAD risk.

Idioma: Inglés
DOI: 10.1016/j.bspc.2023.105056
Año: 2023
Publicado en: Biomedical Signal Processing and Control 86 (2023), 105056 [13 pp.]
ISSN: 1746-8094

Factor impacto JCR: 4.9 (2023)
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 30 / 123 = 0.244 (2023) - Q1 - T1
Factor impacto CITESCORE: 9.8 - Biomedical Engineering (Q1) - Signal Processing (Q1) - Health Informatics (Q1)

Factor impacto SCIMAGO: 1.284 - Biomedical Engineering (Q1) - Signal Processing (Q1) - Health Informatics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-IIU/796-2019
Financiación: info:eu-repo/grantAgreement/ES/DGA/LMP94_21
Financiación: info:eu-repo/grantAgreement/ES/DGA/T39-23R
Financiación: info:eu-repo/grantAgreement/EUR/ERC-2014-StG-638284
Financiación: info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2019-104881RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2019-105674RB-I00
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130459B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-11-22-11:59:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Teoría de la Señal y Comunicaciones



 Record created 2023-07-28, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)