000126829 001__ 126829
000126829 005__ 20241125101147.0
000126829 0247_ $$2doi$$a10.1016/j.chaos.2023.113507
000126829 0248_ $$2sideral$$a134140
000126829 037__ $$aART-2023-134140
000126829 041__ $$aeng
000126829 100__ $$aWang, Xiangrong
000126829 245__ $$aInterspecific competition shapes the structural stability of mutualistic networks
000126829 260__ $$c2023
000126829 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126829 5203_ $$aMutualistic networks, such as plant–pollinator networks, have attracted increasing attention in the ecological literature in the last decades, not only because of their fascinating natural history, but also because mutualistic interactions have been shown to play a key role in the maintenance of biodiversity. Although inter-specific competition has long been known to be a crucial driver of species coexistence as well, there is a lack of theory investigating the interplay between the structures of competitive and mutualistic networks when jointly considered. Here, we develop an analytical framework to study the structural stability — the range of conditions under which all species coexist stably, i.e. where the community is both feasible and stable — of ecological communities in which both mutualistic interactions between plants and pollinators and competitive interactions among plants and among pollinators are present. Using the structure of 50 real networks for mutualistic interactions, combined with analytical and numerical analyses, we show that the structure of the competitive network radically alters the necessary conditions for species coexistence in these communities. Our mathematical framework also allows to accurately characterize the structural stability of these systems. Moreover, we introduce a new metric that accurately links the network structures of competitive and mutualistic interactions to species coexistence. Our results highlight the joint role of the structures of different interaction types to understand the stability of ecological communities and facilitate the analysis of similar natural and artificial systems in which mutualism and competition coexist.
000126829 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E36-20R$$9info:eu-repo/grantAgreement/ES/MCIN-AEI-FEDER/PID2020-115800GB-I00
000126829 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126829 590__ $$a5.3$$b2023
000126829 592__ $$a1.349$$b2023
000126829 591__ $$aPHYSICS, MATHEMATICAL$$b2 / 60 = 0.033$$c2023$$dQ1$$eT1
000126829 593__ $$aApplied Mathematics$$c2023$$dQ1
000126829 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b7 / 135 = 0.052$$c2023$$dQ1$$eT1
000126829 593__ $$aMathematical Physics$$c2023$$dQ1
000126829 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b18 / 112 = 0.161$$c2023$$dQ1$$eT1
000126829 593__ $$aStatistical and Nonlinear Physics$$c2023$$dQ1
000126829 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1
000126829 593__ $$aMathematics (miscellaneous)$$c2023$$dQ1
000126829 594__ $$a13.2$$b2023
000126829 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126829 700__ $$aPeron, Thomas
000126829 700__ $$aDubbeldam, Johan L.A.
000126829 700__ $$aKéfi, Sonia
000126829 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Yamir$$uUniversidad de Zaragoza
000126829 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000126829 773__ $$g172 (2023), 113507 [9 pp.]$$pChaos, solitons fractals$$tChaos, Solitons and Fractals$$x0960-0779
000126829 8564_ $$s1089756$$uhttps://zaguan.unizar.es/record/126829/files/texto_completo.pdf$$yVersión publicada
000126829 8564_ $$s2455843$$uhttps://zaguan.unizar.es/record/126829/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126829 909CO $$ooai:zaguan.unizar.es:126829$$particulos$$pdriver
000126829 951__ $$a2024-11-22-12:04:54
000126829 980__ $$aARTICLE