000126952 001__ 126952
000126952 005__ 20240410085608.0
000126952 0247_ $$2doi$$a10.1007/s40324-023-00328-2
000126952 0248_ $$2sideral$$a134466
000126952 037__ $$aART-2024-134466
000126952 041__ $$aeng
000126952 100__ $$0(orcid)0000-0002-8089-343X$$aBarrio, Roberto$$uUniversidad de Zaragoza
000126952 245__ $$aDynamics of excitable cells: spike-adding phenomena in action
000126952 260__ $$c2024
000126952 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126952 5203_ $$aWe study the dynamics of action potentials of some electrically excitable cells: neurons and cardiac muscle cells. Bursting, following a fast–slow dynamics, is the most characteristic behavior of these dynamical systems, and the number of spikes may change due to spike-adding phenomenon. Using analytical and numerical methods we give, by focusing on the paradigmatic 3D Hindmarsh–Rose neuron model, a review of recent results on the global organization of the parameter space of neuron models with bursting regions occurring between saddle-node and homoclinic bifurcations (fold/hom bursting). We provide a generic overview of the different bursting regimes that appear in the parametric phase space of the model and the bifurcations among them. These techniques are applied in two realistic frameworks: insect movement gait changes and the appearance of Early Afterdepolarizations in cardiac dynamics.
000126952 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E22-20R$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-20R$$9info:eu-repo/grantAgreement/ES/DGA/LMP94_21$$9info:eu-repo/grantAgreement/ES/MCIU/FPU20-04039$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-096026-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-113052GB-I00$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MTM2017-87697-P
000126952 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126952 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126952 700__ $$aIbáñez, Santiago
000126952 700__ $$0(orcid)0000-0001-9868-9368$$aJover-Galtier, Jorge A.$$uUniversidad de Zaragoza
000126952 700__ $$0(orcid)0000-0002-1184-5901$$aLozano, Álvaro$$uUniversidad de Zaragoza
000126952 700__ $$0(orcid)0000-0002-7374-3222$$aMartínez, M. Ángeles$$uUniversidad de Zaragoza
000126952 700__ $$0(orcid)0000-0002-4802-2511$$aMayora-Cebollero, Ana$$uUniversidad de Zaragoza
000126952 700__ $$0(orcid)0000-0002-3431-0926$$aMayora-Cebollero, Carmen$$uUniversidad de Zaragoza
000126952 700__ $$aPérez, Lucía
000126952 700__ $$0(orcid)0000-0002-5701-1670$$aSerrano, Sergio$$uUniversidad de Zaragoza
000126952 700__ $$0(orcid)0000-0001-7111-5022$$aVigara, Rubén$$uUniversidad de Zaragoza
000126952 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000126952 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000126952 773__ $$g81 (2024), 113-146$$pSEMA j.$$tSEMA Journal$$x2254-3902
000126952 8564_ $$s8886065$$uhttps://zaguan.unizar.es/record/126952/files/texto_completo.pdf$$yVersión publicada
000126952 8564_ $$s1238799$$uhttps://zaguan.unizar.es/record/126952/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126952 909CO $$ooai:zaguan.unizar.es:126952$$particulos$$pdriver
000126952 951__ $$a2024-04-10-08:44:41
000126952 980__ $$aARTICLE