On k-polycosymplectic Marsden–Weinstein reductions
Resumen: We review and slightly improve the known k-polysymplectic Marsden–Weinstein reduction theory by removing some technical conditions on k-polysymplectic momentum maps by developing a theory of affine Lie group actions for k-polysymplectic momentum maps, removing the necessity of their co-adjoint equivariance. Then, we focus on the analysis of a particular case of k-polysymplectic manifolds, the so-called fibred ones, and we study their k-polysymplectic Marsden–Weinstein reductions. Previous results allow us to devise a k-polycosymplectic Marsden–Weinstein reduction theory, which represents one of our main results. Our findings are applied to study coupled vibrating strings and, more generally, k-polycosymplectic Hamiltonian systems with field symmetries. We show that k-polycosymplectic geometry can be understood as a particular type of k-polysymplectic geometry. Finally, a k-cosymplectic to ℓ-cosymplectic geometric reduction theory is presented, which reduces, geometrically, the space-time variables in a k-cosymplectic framework. An application of this latter result to a vibrating membrane with symmetries is given.
Idioma: Inglés
DOI: 10.1016/j.geomphys.2023.104899
Año: 2023
Publicado en: JOURNAL OF GEOMETRY AND PHYSICS 191 (2023), 104899 [36 pp.]
ISSN: 0393-0440

Factor impacto JCR: 1.6 (2023)
Categ. JCR: MATHEMATICS rank: 50 / 490 = 0.102 (2023) - Q1 - T1
Categ. JCR: PHYSICS, MATHEMATICAL rank: 25 / 60 = 0.417 (2023) - Q2 - T2

Factor impacto CITESCORE: 2.9 - Geometry and Topology (Q1) - Physics and Astronomy (all) (Q2) - Mathematical Physics (Q2)

Factor impacto SCIMAGO: 0.617 - Geometry and Topology (Q2) - Physics and Astronomy (miscellaneous) (Q2) - Mathematical Physics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2021-125515NB-C22
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-12:03:30)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2023-09-11, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)