ß-(Z)-Selective alkyne hydrosilylation by a N,O-functionalized NHC-based rhodium(i) catalyst
Resumen: Neutral and cationic cyclooctadiene rhodium(I) complexes with a lutidine-derived polydentate ligand having NHC and methoxy side-donor functions, [RhBr(cod)(κC-tBuImCH2PyCH2OMe)] and [Rh(cod)(κ2C,N-tBuImCH2PyCH2OMe)]PF6, have been prepared. Carbonylation of the cationic compound yields the dicarbonyl complex [Rh(CO)2(κ2C,N-tBuImCH2PyCH2OMe)]PF6 whereas carbonylation of the neutral compound affords a mixture of di- and monocarbonyl neutral complexes [RhBr(CO)2(κC-tBuImCH2PyCH2OMe)] and [RhBr(CO)(κ2C,N-tBuImCH2PyCH2OMe)]. These complexes efficiently catalyze the hydrosilylation of 1-hexyne with HSiMe2Ph with a marked selectivity towards the β-(Z)-vinylsilane product. Catalyst [RhBr(CO)(κ2C,N-tBuImCH2PyCH2OMe)] showed a superior catalytic performance, in terms of both activity and selectivity, and has been applied to the hydrosilylation of a range of 1-alkynes and phenylacetylene derivatives with diverse hydrosilanes, including HSiMe2Ph, HSiMePh2, HSiPh3 and HSiEt3, showing excellent β-(Z) selectivity for the hydrosilylation of linear aliphatic 1-alkynes. Hydrosilylation of internal alkynes, such as diphenylacetylene and 1-phenyl-1-propyne, selectively affords the syn-addition vinylsilane products. The β-(Z) selectivity of these catalysts contrasts with that of related rhodium(I) catalysts based on 2-picolyl-functionalised NHC ligands, which were reported to be β-(E) selective. An energy barrier ΔG‡ of 19.8 ± 2.0 kcal mol−1 (298 K) has been determined from kinetic studies on the hydrosilylation of 1-hexyne with HSiMe2Ph. DFT studies suggest that the methoxy-methyl group is unlikely to be involved in the activation of hydrosilane, and then hydrosilane activation is likely to proceed via a classical Si–H oxidative addition.
Idioma: Inglés
DOI: 10.1039/D3DT01911J
Año: 2023
Publicado en: Dalton Transactions 52, 33 (2023), 11503-11517
ISSN: 1477-9226

Factor impacto JCR: 3.5 (2023)
Categ. JCR: CHEMISTRY, INORGANIC & NUCLEAR rank: 13 / 44 = 0.295 (2023) - Q2 - T1
Factor impacto SCIMAGO: 0.697 - Inorganic Chemistry (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E42-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-103965GB-I00/AEI/10.13039/501100011033
Tipo y forma: Article (Published version)
Área (Departamento): Área Química Inorgánica (Dpto. Química Inorgánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-07-19-18:38:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2023-10-06, last modified 2024-07-20


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)