000127836 001__ 127836
000127836 005__ 20241125101200.0
000127836 0247_ $$2doi$$a10.1002/batt.202300233
000127836 0248_ $$2sideral$$a134935
000127836 037__ $$aART-2023-134935
000127836 041__ $$aeng
000127836 100__ $$aAlvira, Darío$$uUniversidad de Zaragoza
000127836 245__ $$aVine Shoots-Derived Hard Carbons as Anodes for Sodium-Ion Batteries: Role of Annealing Temperature in Regulating Their Structure and Morphology
000127836 260__ $$c2023
000127836 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127836 5203_ $$aSodium‐ion batteries (SIBs) are considered one of the most promising large‐scale and low‐cost energy storage systems due to the abundance and low price of sodium. Herein, hard carbons from a sustainable biomass feedstock (vine shoots) were synthesized via a simple two‐step carbonization process at different highest temperatures to be used as anodes in SIBs. The hard carbon produced at 1200 °C delivered the highest reversible capacity (270 mAh g−1 at 0.03 A g−1, with an acceptable initial coulombic efficiency of 71 %) since a suitable balance between the pseudographitic domains growth and the retention of microporosity, defects, and functional groups was achieved. A prominent cycling stability with a capacity retention of 97 % over 315 cycles was also attained. Comprehensive characterization unraveled a three‐stage sodium storage mechanism based on adsorption, intercalation, and filling of pores. A remarkable specific capacity underestimation of up to 38 % was also found when a two‐electrode half‐cell configuration was employed to measure the rate performance. To avoid this systematic error caused by the counter/reference electrode polarization, we strongly recommend the use of a three‐electrode setup or a full‐cell configuration to correctly evaluate the anode response at moderate and high current rates.
000127836 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2029-107737RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-127847OB-I00$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-23R
000127836 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000127836 590__ $$a5.1$$b2023
000127836 592__ $$a1.438$$b2023
000127836 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b130 / 439 = 0.296$$c2023$$dQ2$$eT1
000127836 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ1
000127836 591__ $$aELECTROCHEMISTRY$$b13 / 45 = 0.289$$c2023$$dQ2$$eT1
000127836 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000127836 593__ $$aElectrochemistry$$c2023$$dQ1
000127836 594__ $$a8.6$$b2023
000127836 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127836 700__ $$aAntorán, Daniel$$uUniversidad de Zaragoza
000127836 700__ $$0(orcid)0000-0003-0373-8310$$aVidal, Mariano$$uUniversidad de Zaragoza
000127836 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, Victor$$uUniversidad de Zaragoza
000127836 700__ $$0(orcid)0000-0002-0118-3254$$aManyà, Joan J.$$uUniversidad de Zaragoza
000127836 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000127836 7102_ $$15004$$2545$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingeniería Mecánica
000127836 773__ $$g(2023), e202300233 [13 pp.]$$tBatteries & supercaps$$x2566-6223
000127836 8564_ $$s12002866$$uhttps://zaguan.unizar.es/record/127836/files/texto_completo.pdf$$yVersión publicada
000127836 8564_ $$s1607386$$uhttps://zaguan.unizar.es/record/127836/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127836 909CO $$ooai:zaguan.unizar.es:127836$$particulos$$pdriver
000127836 951__ $$a2024-11-22-12:11:16
000127836 980__ $$aARTICLE