Carboxylate-Assisted ß-(Z) Stereoselective Hydrosilylation of Terminal Alkynes Catalyzed by a Zwitterionic Bis-NHC Rhodium(III) Complex
Resumen: The zwitterionic compound [Cp*RhCl{(MeIm)2CHCOO}] is an efficient catalyst for the hydrosilylation of terminal alkynes with excellent regio- and stereoselectivity toward the less thermodynamically stable ß-(Z)-vinylsilane isomer under mild reaction conditions. A broad range of linear 1-alkynes, cycloalkyl acetylenes, and aromatic alkynes undergo the hydrosilylation with HSiMe2Ph to afford the corresponding ß-(Z)-vinylsilanes in quantitative yields in short reaction times. The reaction of aliphatic alkynes with HSiEt3 is slower, resulting in a slight decrease of selectivity toward the ß-(Z)-vinylsilane product, which is still greater than 90%. However, a significant selectivity decrease is observed in the hydrosilylation of aromatic alkynes because of the ß-(Z) ¿ ß-(E) vinylsilane isomerization. Moreover, the hydrosilylation of bulky alkynes, such as t-Bu-CCH or Et3SiCCH, is unselective. Experimental evidence suggests that the carboxylate function plays a key role in the reaction mechanism, which has been validated by means of density functional theory calculations, as well as by mass spectrometry and labeling studies. On the basis of previous results, we propose an ionic outer-sphere mechanism pathway in which the carboxylate fragment acts as a silyl carrier. Namely, the hydrosilylation mechanism entails the heterolytic activation of the hydrosilane assisted by the carboxylate function to give the hydrido intermediate [Cp*RhH{(MeIm)2CHCOO-SiR3}]+. The transference of the silylium moiety from the carboxylate to the alkyne results in the formation of a flat ß-silyl carbocation intermediate that undergoes a hydride transfer from the Rh(III) center to generate the vinylsilane product. The outstanding ß-(Z) selectivity results from the minimization of the steric interaction between the silyl moiety and the ligand system in the hydride transfer transition state. Copyright
Idioma: Inglés
DOI: 10.1021/acscatal.0c01582
Año: 2020
Publicado en: ACS CATALYSIS 10, 13 (2020), 7367-7380
ISSN: 2155-5435

Factor impacto JCR: 13.084 (2020)
Categ. JCR: CHEMISTRY, PHYSICAL rank: 15 / 162 = 0.093 (2020) - Q1 - T1
Factor impacto SCIMAGO: 4.897 - Chemistry (miscellaneous) (Q1) - Catalysis (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/Building Europe from Aragon
Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E42-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2016-75884-P
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Química Inorgánica (Dpto. Química Inorgánica)
Área (Departamento): Área Química Física (Dpto. Química Física)


Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2024-02-09-14:44:54)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-10-23, última modificación el 2024-02-09


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)