Extremal Structure of Projective Tensor Products
Resumen: We prove that, given two Banach spaces X and Y and bounded, closed convex sets C⊆X and D⊆Y , if a nonzero element z∈co¯¯¯¯¯¯(C⊗D)⊆X⊗ˆπY is a preserved extreme point then z=x0⊗y0 for some preserved extreme points x0∈C and y0∈D , whenever K(X,Y∗) separates points of X⊗ˆπY (in particular, whenever X or Y has the compact approximation property). Moreover, we prove that if x0∈C and y0∈D are weak-strongly exposed points then x0⊗y0
is weak-strongly exposed in co¯¯¯¯¯¯(C⊗D) whenever x0⊗y0 has a neighbourhood system for the weak topology defined by compact operators. Furthermore, we find a Banach space X isomorphic to ℓ2 with a weak-strongly exposed point x0∈BX such that x0⊗x0 is not a weak-strongly exposed point of the unit ball of X⊗ˆπX .

Idioma: Inglés
DOI: 10.1007/s00025-023-01970-y
Año: 2023
Publicado en: Results in Mathematics 78 (2023), 196 [16 pp.]
ISSN: 1422-6383

Factor impacto JCR: 1.1 (2023)
Categ. JCR: MATHEMATICS rank: 98 / 490 = 0.2 (2023) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 163 / 332 = 0.491 (2023) - Q2 - T2

Factor impacto CITESCORE: 1.9 - Mathematics (miscellaneous) (Q2) - Applied Mathematics (Q3)

Factor impacto SCIMAGO: 0.618 - Mathematics (miscellaneous) (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C31
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C32
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-12:03:39)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2023-10-23, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)