Influence of Traction Battery Arrangement on Risk of Thermal Runaway and Loads Suffered by Electric Vehicle Occupant during Side Collision
Resumen: In the current electric vehicles, the purpose of the traction battery is to store energy. When designing this battery, different parameters are considered to arrange the battery/module/cells in the mechanically and thermally safest configuration. Moreover, the battery layout must produce correct dynamic behavior during collisions. In the present study, different battery configurations plus added energy absorbers were analyzed. To achieve this, an internal combustion vehicle modeled with finite elements was applied as the reference model. The structural behavior of the different battery configurations in the event of a side collision was examined. First, the safest arrangement was established with respect to both cabin intrusion and thermal runaway propagation. Second, the safest arrangement that guarantees the safety of the occupants in the event of a side collision was analyzed using MADYMO. This software includes experimentally validated dummies that allow insight into the stresses experienced by occupants. The results of the analysis showed that battery pack inclusion in the vehicle increases the stiffness of the car floor, resulting in fewer intrusions into the passenger compartment. Therefore, safety of the occupants is increased. However, none of the configurations analyzed showed sufficient safety against thermal runaway. This study contains sufficient contributions to the new body of knowledge, since there is no study that analyzes the safest configuration in terms of battery behavior with respect to intrusion into the passenger compartment and the effect of thermal runaway, together with the fact that this is the safest configuration for occupants after analyzing the injuries they experience in a side collision for the different configurations.
Idioma: Inglés
DOI: 10.3390/en16196892
Año: 2023
Publicado en: Energies 16, 19 (2023), 6892 [26 pp.]
ISSN: 1996-1073

Factor impacto JCR: 3.0 (2023)
Categ. JCR: ENERGY & FUELS rank: 108 / 171 = 0.632 (2023) - Q3 - T2
Factor impacto CITESCORE: 6.2 - Control and Optimization (Q1) - Engineering (miscellaneous) (Q1) - Electrical and Electronic Engineering (Q2) - Energy Engineering and Power Technology (Q2) - Fuel Technology (Q2) - Renewable Energy, Sustainability and the Environment (Q2) - Energy (miscellaneous) (Q2)

Factor impacto SCIMAGO: 0.651 - Engineering (miscellaneous) (Q1) - Energy (miscellaneous) (Q2) - Energy Engineering and Power Technology (Q2) - Renewable Energy, Sustainability and the Environment (Q2) - Control and Optimization (Q2) - Fuel Technology (Q2) - Electrical and Electronic Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/ES/UZ/DI 4/2020
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingen.e Infraestr.Transp. (Dpto. Ingeniería Mecánica)
Área (Departamento): Área Ingeniería Mecánica (Dpto. Ingeniería Mecánica)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-12:10:19)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-10-23, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)